首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A series of meso‐ester‐substituted BODIPY derivatives 1–6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core ( 3 – 6 ) become partially soluble in water, and their absorptions and emissions are located in the far‐red or near‐infrared region. Three synthetic approaches are attempted to access the meso‐carboxylic acid (COOH)‐substituted BODIPYs 7 and 8 from the meso‐ester‐substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso‐COOH‐substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time‐dependent density functional theory calculations are conducted to understand the structure–optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso‐ester‐substituted BODIPYs ( 1 and 3 – 6 ) and one of the meso‐COOH‐substituted BODIPYs ( 8 ) are very membrane‐permeable. These features make these meso‐ester‐ and meso‐COOH‐substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells.  相似文献   

3.
Novel β‐NaGdF4/Na(Gd,Yb)F4:Er/NaYF4:Yb/NaNdF4:Yb core/shell 1/shell 2/shell 3 (C/S1/S2/S3) multi‐shell nanocrystals (NCs) have been synthesized and used as probes for in vivo imaging. They can be excited by near‐infrared (800 nm) radiation and emit short‐wavelength infrared (SWIR, 1525 nm) radiation. Excitation at 800 nm falls into the “biological transparency window”, which features low absorption by water and low heat generation and is considered to be the ideal excitation wavelength with the least impact on biological tissues. After coating with phospholipids, the water‐soluble NCs showed good biocompatibility and low toxicity. With efficient SWIR emission at 1525 nm, the probe is detectable in tissues at depths of up to 18 mm with a low detection threshold concentration (5 nM for the stomach of nude mice and 100 nM for the stomach of SD rats). These results highlight the potential of the probe for the in vivo monitoring of areas that are otherwise difficult to analyze.  相似文献   

4.
5.
6.
Cr3+‐doped SrGa12O19 is demonstrated to be a broadband near‐infrared (650–950 nm) long‐persistent phosphor whose luminescence can last for more than 2 h after ultraviolet irradiation is stopped. Detailed analysis of the photoluminescence and thermoluminescence spectra and of the persistent decay behavior of the Cr3+‐doped SrGa12O19 samples indicate that the persistent energy transfer from the SrGa12O19 host to the Cr3+ ions and the filling and release of electrons into and from the shallow and deep traps through the conduction band is responsible for the long‐persistent phosphorescence.  相似文献   

7.
8.
The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. A new strategy is based on the incorporation of targeting moieties into the non‐delocalized structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals in a model system, two families of bifunctional molecules that target bone without requiring a traditional bisphosphonate are synthesized. With peak fluorescence emissions at approximately 700 or 800 nm, these molecules can be used for fluorescence‐assisted resection and exploration (FLARE) dual‐channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near‐infrared fluorophores remain stable in bone for over five weeks, and histological analysis confirms their incorporation into the bone matrix. Taken together, a new strategy for creating ultra‐compact, targeted near‐infrared fluorophores for various bioimaging applications is described.  相似文献   

9.
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission.  相似文献   

10.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

11.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

12.
A series of highly efficient deep red to near‐infrared (NIR) emissive organic crystals 1 – 3 based on the structurally simple 2′‐hydroxychalcone derivatives were synthesized through a simple one‐step condensation reaction. Crystal 1 displays the highest quantum yield (Φf) of 0.32 among the reported organic single crystals with an emission maximum (λem) over 710 nm. Comparison between the bright emissive crystals 1 – 3 and the nearly nonluminous compounds 4 – 7 clearly gives evidence that a subtle structure modification can arouse great property changes, which is instructive in designing new high‐efficiency organic luminescent materials. Notably, crystals 1 – 3 exhibit amplified spontaneous emissions (ASE) with extremely low thresholds. Thus, organic deep red to NIR emissive crystals with very high Φf have been obtained and are found to display the first example of NIR fluorescent crystal ASE.  相似文献   

13.
Bright funnels : A series of dendritic systems, which are capable of funneling energy from the periphery to the core, have been synthesized. The photophysical properties of dendrimers have been determined. Selective excitation of the donor leads to an efficient energy transfer (>90 %) to the acceptor. The approach provides a facile synthesis for the modification of near‐infrared BF2‐Azadipyrromethenes.

  相似文献   


14.
Much progress has been made in the field of research on organic near‐infrared materials for potential applications in photonics, communications, energy, and biophotonics. This account mainly describes our research work on organic near‐infrared materials; in particular, donor‐acceptor small molecules, organometallics, and donor‐acceptor polymers with the bandgaps less than 1.2 eV. The molecular designs, structure‐property relationships, unique near‐infrared absorption, emission and color/wavelength‐changing properties, and some emerging applications are discussed.  相似文献   

15.
The first observation of strong directional surface‐plasmon‐coupled emission (SPCE) of Rhodamine 110 in silica nanofilms deposited on silver nanolayers is reported. The preparation of the material is described in detail. The intensity of SPCE exceeds 10 times that of free space fluorescence and total linear light polarization in the SPCE ring is observed. A new experimental setup and an original data collection method is presented. Our material completely preserves its fluorescence properties for at least eight months.  相似文献   

16.
We have prepared and characterized a series of osmium complexes [Os2(CO)4(fpbpy)2] ( 1 ), [Os(CO)(fpbpy)2] ( 2 ), and [Os(fpbpy)2] ( 3 ) with tridentate 6‐pyrazol‐3‐yl 2,2′‐bipyridine chelating ligands. Upon the transformation of complex 2 into 3 through the elimination of the CO ligand, an extremely large change in the phosphorescence wavelength from 655 to 935 nm was observed. The results are rationalized qualitatively by the strong π‐accepting character of CO, which lowers the energy of the osmium dπ orbital, in combination with the lower degree of π conjugation in 2 owing to the absence of one possible pyridine‐binding site. As a result, the energy gap for both intraligand π–π* charge transfer (ILCT) and metal‐to‐ligand charge transfer (MLCT) is significantly greater in 2 . Firm support for this explanation was also provided by the time‐dependent DFT approach, the results of which led to the conclusion that the S0→T1 transition mainly involves MLCT between the osmium center and bipyridine in combination with pyrazolate‐to‐bipyridine 3π–π* ILCT. The relatively weak near‐infrared emission can be rationalized tentatively by the energy‐gap law, according to which the radiationless deactivation may be governed by certain low‐frequency motions with a high density of states. The information provided should allow the successful design of other emissive tridentate metal complexes, the physical properties of which could be significantly different from those of complexes with only a bidentate chromophore.  相似文献   

17.
A new lanthanide probe based on the fluorescence resonance energy transfer (FRET) process with the combination of ytterbium porphyrinate complex and a rhodamine B derivative unit was synthesized to detect the Hg2+ ion with responsive emission in the visible and near‐IR region with a detection limit of 10 μM  相似文献   

18.
19.
Zinc(II) phthalocyanine dyes that contain triarylamine‐terminated bisthiophene and hexylbisthiophene groups have been synthesized by a convergent approach by using carboxytriiodo–ZnPc as a precursor. Further transformation of the iodo groups by a Pd‐catalyzed reaction allowed easy preparation of further extended π‐conjugated carboxy–ZnPcs. These dyes have been used as sensitizers in dye‐sensitized solar cells, which exhibit a panchromatic response and moderate overall efficiencies.  相似文献   

20.
Terrylene diimides with four aromatic heterocycles (AHTDIs) were synthesized under Stille Cross‐coupling conditions and fully characterized by NMR and mass spectrometry. The aggregation of the terrylene diimide (TDI) was suppressed by four heterocycles substituents on the bay region, and these AHTDIs exhibited good solubility in common organic solvents. The effects of the substituted groups on the optical and electrochemical properties were also investigated. The introduction of four aromatic heterocycles on the bay of TDI resulted in significant red‐shifts of the absorption peak (100 nm), corresponding to a decrease in the band gap from 1.82 to 1.50 eV. Furthermore, with four rich electron aromatic heterocycles, the AHTDIs showed 280 mV negative‐shifts of first oxidation potentials and a new oxidation wave, corresponding to an increase in the HOMO levels from??5.60 to??5.28 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号