首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We synthesized a series of donor‐substituted tridurylboranes containing different types and number of chromophores including 1‐pyrene (PB1–3), 3‐carbazole (CBC1–3), or substituted p‐carbazol‐N‐phenyl (CBN3a–c) as various donor–acceptor (D–A) molecules. The photophysical and electrochemical properties of these twisted D–A molecules were investigated by means of UV/Vis absorption and fluorescence spectroscopy as well as cyclic voltammetry (CV). Solvent polarity, viscosity, and temperature effects on the fluorescence emission reveal the existence of three types of excited states, and their equilibria and interconversions between three excited states. In increasing order of the charge‐separated extent and the conformational change, three excited states are the locally excited (LE) state, the more planar intramolecular charge‐transfer (ICT) state, and the more twisted ICT (TICT) state as compared to the ground state. The TICT state undergoes a conformational change with a higher energy barrier over the ICT state. The solvent polarity effect on the state conversion is opposite to the viscosity effect, and temperature effects derive from its resulting changes of polarity and viscosity. For example, the increase of the polarity of the solvent results in excited‐state conversions from the LE state to the ICT state, and/or from the ICT to the TICT state, and an increased viscosity leads to the opposite conversions. On the basis of electrochemical and spectral data, thermodynamics of a possible ICT process were estimated, and correlated with the excited‐state character. Finally, three excited states have been characterized by the conformation, the photophysical properties, and the thermodynamics of the ICT processes.  相似文献   

2.
All‐BODIPY‐based (BODIPY=boron‐dipyrromethene) donor–acceptor systems capable of wide‐band absorbance leading to efficient energy transfer in the near‐IR region are reported. A covalently linked 3‐pyrrolyl BODIPY–BODIPY dimer building block bearing an ethynyl group at the meso‐aryl position is synthesized and coupled with three different monomeric BODIPY/pyrrolyl BODIPY building blocks with a bromo/iodo group under Pd0 coupling conditions to obtain three covalently linked 3‐pyrrolyl‐BODIPY‐based donor–acceptor oligomers in 19–29 % yield. The oligomers are characterized in detail by 1D and 2D NMR spectroscopy, high‐resolution mass spectrometry, and optical spectroscopy. Due to the presence of different functionalized BODIPY derivatives in the oligomers, panchromatic light capture (300–725 nm) is witnessed. Fluorescence studies reveal singlet–singlet energy transfer from BODIPY monomer to BODIPY dimer leading to emission in the 700–800 nm range. Theoretical modeling according to the Förster mechanism predicts ultrafast energy transfer due to good spectral overlap of the donor and acceptor entities. Femtosecond transient absorption studies confirm this to be the case and thus show the relevance of the currently developed all‐BODIPY‐based energy‐funneling supramolecular sytems with near‐IR emission to solar‐energy harvesting applications.  相似文献   

3.
Herein we report on the synthesis and acid‐responsive emission properties of donor–acceptor (D–A) molecules that contain a thienothiophene unit. 2‐Arylthieno[3,2‐b]thiophenes were conjugated with an N‐methylbenzimidazole unit to form acid‐responsive D–A‐type fluorophores. The D–A‐conjugated fluorophores showed intense intramolecular charge‐transfer (ICT) emission in response to acid. The effect of the substitution on their photophysical properties as well as their solvent‐dependence indicated non‐twisting ICT emission in protonated D–A molecules. The quinoidal character of 2‐arylthienothiophene as a donor part is discussed, as it is assumed that it contributes to suppression of the molecular twisting in the excited state, therefore decreasing the nonradiative rate constant, thereby resulting in the intense ICT emission. Acid–base‐sensitive triple‐color emission was also achieved by the introduction of a base‐responsive phenol group in the donor part.  相似文献   

4.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

5.
刘涛  魏用刚  袁燕秋  郭庆祥 《中国化学》2005,23(10):1430-1436
A series of N-bonded donor-acceptor derivatives of phenothiazine containing phenyl (PHPZ), anisyl (ANPZ), pyridyl (PYPZ), naphthyl (NAPZ), acetylphenyl (APPZ), and cyanophenyl (CPPZ) as an electron acceptor have been synthesized. Their photophysical properties were investigated in solvents of different polarities by absorption and emission techniques. These studies clearly revealed the existence of an intramolecular charge transfer (ICT) excited state in the latter four compounds. The solvent dependent Stokes shift values were analyzed by the modified Lippert-Mataga equation to obtain the excited state dipole moment values. The large excited state dipole moment suggests that the full (or nearly full) electron transfer take place in the A-D systems. In the system of A-D phenothiazine derivatives, the transition dipole moments Mflu were determined mainly by direct interactions between the solvent-equilibrated fluorescence ^1CT state and ground state because of their lack of significant change with increase of the solvent polarity. The electron structure and molecular conformation of phenothiazine derivatives will be significantly changed with the increase of the electron affinity of the N-10 substituent.  相似文献   

6.
Cyclopenta[hi]aceanthrylenes (CPAs) have been functionalized at two of the peripheral positions with electronically inert trimethylsilylethynyl ( 1 ), as well as with electron‐donating 4‐ethynyl‐N,N‐dimethylaniline ( 2 ), ethynyl ZnIIphthalocyanine ( 3 ), and ethynyl ZnIIporphyrin ( 4 ) units. Consistent with X‐ray crystal structures of 2 and 4 , analyses of absorption and fluorescence of 2 – 4 point to strong electronic communication between the CPA and the peripheral units, affording quadrupolar electron donor‐acceptor‐donor charge‐transfer conjugates. By virtue of their quadrupolar/dipolar charge‐transfer characters in the excited state, 2 – 4 exhibit fluoro‐solvatochromism. Transient absorption spectroscopy confirmed delocalized quadrupolar ground states and formation of weakly solvent stabilized quadrupolar singlet excited states. The latter transform into strongly stabilized dipolar excited states before deactivating to the ground state in 2 and give rise to a fully charge separated state in 3 and 4 .  相似文献   

7.
Two self‐assembled supramolecular donor–acceptor triads consisting of AlIII porphyrin (AlPor) with axially bound naphthalenediimide (NDI) as an acceptor and tetrathiafulvalene (TTF) as a secondary donor are reported. In the triads, the NDI and TTF units are attached to AlIII on opposite faces of the porphyrin, through covalent and coordination bonds, respectively. Fluorescence studies show that the lowest excited singlet state of the porphyrin is quenched through electron transfer to NDI and hole transfer to TTF. In dichloromethane hole transfer to TTF dominates, whereas in benzonitrile (BN) electron transfer to NDI is the main quenching pathway. In the nematic phase of the liquid crystalline solvent 4‐(n‐pentyl)‐4′‐cyanobiphenyl (5CB), a spin‐polarized transient EPR spectrum that is readily assigned to the weakly coupled radical pair TTF.+NDI.? is obtained. The initial polarization pattern indicates that the charge separation occurs through the singlet channel and that singlet–triplet mixing occurs in the primary radical pair. At later time the polarization pattern inverts as a result of depopulation of the states with singlet character by recombination to the ground state. The singlet lifetime of TTF.+NDI.? is estimated to be 200–300 ns, whereas the triplet lifetime in the approximately 350 mT magnetic field of the X‐band EPR spectrometer is about 10 μs. In contrast, in dichloromethane and BN the lifetime of the charge separation is <10 ns.  相似文献   

8.
Ab initio calculations were performed to investigate the charge separation and charge recombination processes in the photoinduced electron transfer reaction between tetracyanoethylene and acenaphthylene. The excited states of the charge‐balanced electron donor–acceptor complex and the singlet state of ion pair complex were studied by employing configuration interaction singles method. The equilibrium geometry of electron donor–acceptor complex was obtained by the second‐order Møller–Plesset method, with the interaction energy corrected by the counterpoise method. The theoretical study of ground state and excited states of electron donor–acceptor complex in this work reveals that the S1 and S2 states of the electron donor–acceptor complexes are excited charge transfer states, and charge transfer absorptions that corresponds to the S0 → S1 and S0 → S2 transitions arise from π–π* excitations. The charge recombination in the ion pair complex will produce the charge‐balanced ground state or excited triplet state. According to the generalized Mulliken–Hush model, the electron coupling matrix elements of the charge separation process and the charge recombination process were obtained. Based on the continuum model, charge transfer absorption and charge transfer emission in the polar solvent of 1,2‐dichloroethane were investigated. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 23–35, 2003  相似文献   

9.
The photophysical properties of a prototypic donor–acceptor dyad, featuring a conventional boron dipyrromethene (Bodipy) dye linked to a dicyanovinyl unit through a meso‐phenylene ring, have been recorded in weakly polar solvents. The absorption spectrum remains unperturbed relative to that of the parent Bodipy dye but the fluorescence is extensively quenched. At room temperature, the emission spectrum comprises roughly equal contributions from the regular π, π* excited‐singlet state and from an exciplex formed by partial charge transfer from Bodipy to the dicyanovinyl residue. This mixture moves progressively in favor of the locally excited π, π* state on cooling and the exciplex is no longer seen in frozen media; the overall emission quantum yield changes dramatically near the freezing point of the solvent. The exciplex, which has a lifetime of approximately 1 ns at room temperature, can also be seen by transient absorption spectroscopy, in which it decays to form the locally excited triplet state. Under applied pressure (P<170 MPa), formation of the exciplex is somewhat hindered by restricted rotation around the semirigid linkage and again the emission profile shifts in favor of the π, π* excited state. At higher pressure (170<P<550 MPa), the molecule undergoes reversible distortion that has a small effect on the yield of π, π* emission but severely quenches exciplex fluorescence. In the limiting case, this high‐pressure effect decreases the molar volume of the solute by approximately 25 cm3 and opens a new channel for nonradiative deactivation of the excited‐state manifold.  相似文献   

10.
A small series of donor–acceptor molecular dyads has been synthesized and fully characterized. In each case, the acceptor is a dicyanovinyl unit and the donor is a boron dipyrromethene (BODIPY) dye equipped with a single styryl arm bearing a terminal amino group. In the absence of the acceptor, the BODIPY‐based dyes are strongly fluorescent in the far‐red region and the relaxed excited‐singlet states possess significant charge‐transfer character. As such, the emission maxima depend on both the solvent polarity and temperature. With the corresponding push–pull molecules, there is a low‐energy charge‐transfer state that can be observed by both absorption and emission spectroscopy. Here, charge‐recombination fluorescence is weak and decays over a few hundred picoseconds or so to recover the ground state. Overall, these results permit evaluation of the factors affecting the probability of charge‐recombination fluorescence in push–pull dyes. The photophysical studies are supported by cyclic voltammetry and DFT calculations.  相似文献   

11.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

12.
Studies are reported on a series of triphenylamine–(C?C)n–2,5‐diphenyl‐1,3,4‐oxadiazole dyad molecules (n=1–4, 1 , 2 , 3 and 4 , respectively) and the related triphenylamine‐C6H4–(C?C)3–oxadiazole dyad 5 . The oligoyne‐linked D–π–A (D=electron donor, A=electron acceptor) dyad systems have been synthesised by palladium‐catalysed cross‐coupling of terminal alkynyl and butadiynyl synthons with the corresponding bromoalkynyl moieties. Cyclic voltammetric studies reveal a reduction in the HOMO–LUMO gap in the series of compounds 1 – 4 as the oligoyne chain length increases, which is consistent with extended conjugation through the elongated bridges. Photophysical studies provide new insights into conjugative effects in oligoyne molecular wires. In non‐polar solvents the emission from these dyad systems has two different origins: a locally excited (LE) state, which is responsible for a π*→π fluorescence, and an intramolecular charge transfer (ICT) state, which produces charge‐transfer emission. In polar solvents the LE state emission vanishes and only ICT emission is observed. This emission displays strong solvatochromism and analysis according to the Lippert–Mataga–Oshika formalism shows significant ICT for all the luminescent compounds with high efficiency even for the longer more conjugated systems. The excited‐state properties of the dyads in non‐polar solvents vary with the extent of conjugation. For more conjugated systems a fast non‐radiative route dominates the excited‐state decay and follows the Engelman–Jortner energy gap law. The data suggest that the non‐radiative decay is driven by the weak coupling limit.  相似文献   

13.
The photophysical properties of intramolecular charge transfer (ICT) in a novel tribranched donor–π–acceptor chromophore, triphenoxazine‐2,4,6‐triphenyl‐1,3,5‐triazine (tri‐PXZ‐TRZ), with thermally activated delayed fluorescence character was investigated in different aprotic solvents by steady‐state spectroscopy and femtosecond and nanosecond transient absorption spectroscopy measurements. Increasing the solvent polarity led to a significant increase in the Stokes shift. The large Stokes shift in highly polar solvents was attributed to ICT properties upon excitation; this resulted in a strong interaction between the tri‐PXZ‐TRZ molecule and the surrounding solvent, which led to a strong solvation process. Quantum‐chemical calculations and changes in the dipole moment showed that this compound has a large degree of ICT. Furthermore, an apolar environment helped to preserve the symmetry of tri‐PXZ‐TRZ and to enhance its emission efficiency. The femtosecond and nanosecond transient absorption spectroscopy results indicated that the excited‐state dynamics of this push–pull molecule were strongly influenced by solvent polarity through the formation of a solvent‐stabilized ICT state. The excited‐state relaxation mechanism of tri‐PXZ‐TRZ was proposed by performing target model analysis on the femtosecond transient absorption spectra. In addition, the delayed fluorescence of tri‐PXZ‐TRZ was significantly modulated by a potential competition between solvation and intersystem crossing processes.  相似文献   

14.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

15.
The electronic structure of the lowest excited singlet states and molecular geometries of a series of dialkylaminopyridines (DAAPs) representing electron donor–acceptor systems were studied by photostationary and time-resolved UV–vis spectroscopic methods and quantum chemical calculations. The comparative studies allow us to rationalize dual luminescence of 4-DAAPs in terms of the TICT state model—the analysis of the electronic transition dipole moments indicates a nearly orthogonal conformation of the fluorescent ICT states. Introduction of the amino group at meta position as in 3-diisopropylaminopyridine completely changes photophysics of these pyridine derivatives: (i) the Franck-Condon excited state initially reached upon excitation and the solvent equilibrated fluorescent state are most probably of the same nature (both excited states do not correspond to a full separation of charges) and (ii) the electronic structure and geometry of the fluorescent CT states of m-DIAP are solvent dependent.  相似文献   

16.
A series of geminal diethynylethenes (g‐DEEs) with electron‐donating and/or electron‐accepting (D/A) groups were synthesized via a Pd‐catalyzed cross‐coupling sequence. The UV/VIS spectra for donor–acceptor (D–A) functionalized g‐DEEs 5, 8 , and 11 show distinctive absorption trends attributable to intramolecular charge‐transfer (ICT). The bond‐length‐alternation (BLA) index for the cross‐conjugated enediyne framework varies slightly with different terminal substituents as determined by density‐functional theory (DFT) calculations and single‐crystal X‐ray analysis. Ultrafast third‐order optical nonlinearities for the g‐DEEs were measured by the differential optical Kerr effect (DOKE) technique and show that terminal donor–acceptor substitution of g‐DEEs enhances molecular second hyperpolarizabilities (γ) in comparison to donor or acceptor g‐DEEs. A small increase in the two‐photon‐absorption cross‐section (σ(2)) is observed in the series 9 – 11 as a result of increased functionalization. The effects of donor/acceptor substitution on electron delocalization along the cross‐conjugated enediyne structure are evaluated on the basis of natural‐bond‐orbital (NBO) analysis. Solid‐state structures of the four derivatives 3b, 4b, 7 and 8 were characterized by single‐crystal X‐ray structural analysis and show an asymmetric unit cell for one derivative, D–A g‐DEE 8 .  相似文献   

17.
Three (donor–π–acceptor)+ systems with a methyl pyridinium or quinolinium as the electron‐deficient group, a dimethyl amino as the electron‐donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD‐DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited‐state optimized geometries (planar in low‐polarity media and twisted in high‐polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials.  相似文献   

18.
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level.  相似文献   

19.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

20.
The synthesis of a donor–acceptor silicon phthalocyanine (SiPc)‐azafullerene (C59N) dyad 1 and of the first acceptor–donor–acceptor C59N‐SiPc‐C59N dumbbell triad 2 was accomplished. The two C59N‐based materials were comprehensively characterized with the aid of NMR spectroscopy, MALDI‐MS as well as DFT calculations and their redox and photophysical properties were evaluated with CV and steady‐state and time‐resolved absorption and photoluminescence spectroscopy measurements. Notably, femtosecond transient absorption spectroscopy assays revealed that both dyad 1 and triad 2 undergo, after selective photoexcitation of the SiPc moiety, photoinduced electron transfer from the singlet excited state of the SiPc moiety to the azafullerene counterpart to produce the charge‐separated state, with lifetimes of 660 ps, in the case of dyad 1 , and 810 ps, in the case of triad 2 . The current results are expected to have significant implications en route to the design of advanced C59N‐based donor–acceptor systems targeting energy conversion applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号