首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This review describes our recent works on the diastereo‐ and enantioselective synthesis of anti‐β‐hydroxy‐α‐amino acid esters using transition‐metal–chiral‐bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh),iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti‐selective asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides, yielding anti‐β‐hydroxy‐α‐amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo‐ and enantioselectivities. The Ru‐catalyzed asymmetric hydrogenation of α‐amino‐β‐ketoesters via DKR is the first example of generating anti‐β‐hydroxy‐α‐amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni–chiral‐bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides in an anti‐selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α‐aminoketones using a Ni catalyst via DKR is also described.  相似文献   

2.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups.  相似文献   

3.
The oxygen reduction reaction is one of the limiting steps in microbial fuel cell performance. M–N–C catalysts (M as transition metal) represent the best compromise of optimal cost, electrocatalytic activity and durability. The Fe-based catalysts were shown to be the best compared with Co-, Mn-, Ni-based catalysts. The addition of the second transition metal such as Mn was shown to increase the selectivity of the reaction and reduce peroxide production. The use of different N–C precursors resulted in diverse surface chemistry that directly affects the performance. Generally, surface chemistry plays a critical role in the electrocatalytic activity. Integration of the catalyst in the air-breathing cathode is also discussed with a performance that is enhanced by: (i) increased catalyst loading; (ii) the addition of graphene to structure.  相似文献   

4.
Molecular diversity generation through reversible component exchange has acquired great importance in the last decade with the development of dynamic covalent chemistry. We explore here the recombination of components linked by C?C and C?N bonds through reversible double‐bond formation, and cleavage in C?C/C?C and C?C/C?N exchange processes. The reversibility of the Knoevenagel reaction has been explored, and C?C/C?C C/C exchanges have been achieved among different benzylidenes, under organocatalysis by secondary amines such as L ‐proline. The substituents of these benzylidenes were shown to play a very important role in the kinetics of the exchange reactions. L ‐Proline is also used to catalyze the reversible C?C/C?C exchange between Knoevenagel derivatives of barbituric acid and malononitrile. Finally, the interconversion between Knoevenagel derivatives of dimethylbarbituric acid and imines (C?C/C?N exchange) has been studied and was found to occur rapidly in the absence of catalyst. The results of this study pave the way for the extension of dynamic combinatorial chemistry based on C?C/C?C and C?C/C?N exchange systems.  相似文献   

5.
The organic oxidant TEMPO (2,2,4,4‐tetramethylpiperdine‐1‐oxyl) was immobilized on iron oxide (Fe3O4) superparamagnetic nanoparticles by employing strong metal‐oxide chelating phosphonates and azide/alkyne “click” chemistry. This simple preparation yields recyclable TEMPO‐coated nanoparticles with good TEMPO loadings. They have excellent magnetic response and efficiently catalyze the oxidation of a wide range of primary and secondary alcohols to aldehydes, ketones, and lactones under either aerobic acidic MnII/CuII oxidizing Minisci conditions, or basic NaOCl Anelli conditions. The nanoparticles could be recycled more than 20 times under the Minisci conditions and up to eight times under the Anelli conditions with good to excellent substrate conversions and product selectivities. Immobilization of the catalyst through a phosphonate linkage allows the particles to withstand acidic oxidizing environments with minimal catalyst leaching. Clicking TEMPO to the phosphonate prior to phosphonate immobilization, rather than after, ensures the clicked catalyst is the only species on the particle surface. This facilitates quantification of the catalyst loading. The stability of the phosphonate linker and simplicity of this catalyst immobilization method make this an attractive approach for tethering catalysts to oxide supports, creating magnetically separable catalysts that can be used under neutral or acidic conditions.  相似文献   

6.
A novel method for immobilizing porphyrins as well as metalloporphyrins (MPs) on polymeric supports was found, and it is the way to synchronously synthesize and immobilize porphyrins on polymeric microspheres. By using 4‐hydroxybenzaldehyde (HBA)‐bound crosslinked polystyrene (CPS) microspheres, pyrrole, and benzaldehyde in a solution as co‐reactants and through the Adler's reaction between solid–liquid phases, it was successfully realized to simultaneously synthesize and immobilize phenyl porphyrin (PP) on CPS microspheres, resulting in PP‐supported microspheres PP–CPS. With the same method, substituted PPs, 4‐chlorophenyl porphyrin (CPP) and 4‐nitrophenyl porphyrin (NPP), were also successfully immobilized on CPS microspheres by using substituted benzaldehydes, 4‐chlorobenzaldehyde and 4‐nitrobenzaldehyde, as one reactant in the solution, respectively, and other two porphyrin‐supported microspheres, CPP–CPS and NPP–CPS, were obtained. The effects of various factors on the process of synchronously synthesizing and immobilizing porphyrins on CPS microspheres were mainly studied. Further, the coordination reaction of cobalt salt with PP–CPS as well as CPP–CPS and NPP–CPS was conducted, forming three solid catalysts, CoPP–CPS, CoCPP–CPS, and CoNPP–CPS. The catalytic properties of these catalysts in the catalytic oxidation of ethylbenzene to acetophenone by dioxygen were preliminarily examined. The experimental results indicate that the Adler's reaction between solid–liquid phases, namely the reaction between HBA‐bound CPS microspheres and pyrrole as well as free benzaldehyde or analogs in the solution can favorably be carried out. For this process, the fitting protonic acid catalyst is p‐nitrobenzoic acid and appropriate solvent is dimethyl sulfoxide (DMSO). By comparison, the process of preparing CPP–CPS microspheres is easier to be carried out. The obtained three solid catalysts can effectively catalyze the oxidation of ethylbenzene to acetophenone by dioxygen. In comparison, the catalytic activity of CoNPP–CPS is the highest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Herein, we report the synthesis of palladium complexes bearing an N‐heterocyclic carbene (NHC)‐sulfonamide bidentate ligand and their application in ethylene oligomerization and ethylene/polar monomer cooligomerization. These catalysts could smoothly catalyze ethylene oligomerization and ethylene/methyl acrylate cooligomerization albeit the performance was lower compared to that of a NHC–phenoxide catalyst. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 474–477  相似文献   

8.
Functionalized multi‐walled carbon nanotubes were used for covalent immobilization of meso‐tetrakis(4‐carboxyphenyl) porphyrinatoiron (III) chloride [Fe (TCPP)Cl] and meso‐tetrakis(4‐carboxyphenyl) porphyrinatomanganese (III) acetate [Mn (TCPP)OAc]. The full characterization of the hybrid porphyrinic nanomaterials, by Fourier transform‐infrared and UV–Vis spectroscopy, transmission electron microscopy, thermogravimetry and flame atomic absorption spectrometry is described. The oxidation of alkenes and alkanes with molecular oxygen as green oxidant in the presence of Mn‐ and Fe‐catalysts has been studied in a comparative manner. The Fe‐catalyst was shown to have higher catalytic activity compared with the Mn‐catalyst. In addition, both separable solid catalysts can be recovered and reused at least 10 times along with good yields.  相似文献   

9.
《中国化学会会志》2018,65(2):205-211
Zn3(BTC)2 metal‐organic frameworks as recyclable and heterogeneous catalysts were effectively used to catalyze the synthesis of benzimidazole derivatives from o‐phenylendiamine and aldehydes in ethanol. This method provides 2‐aryl‐1H‐benzimidazoles in good to excellent yields with little catalyst loading. The catalyst was characterized using different techniques such as X‐ray diffraction (XRD), energy dispersive X‐ray (EDX) analysis, scanning electron microscopy (SEM), and Fourier transform infrared (FT‐IR) spectroscopy.  相似文献   

10.
The replacement of precious metals in catalysis by earth‐abundant metals is currently one of the urgent challenges for chemists. Whereas palladium‐catalyzed copolymerization of ethylene and polar monomers is a valuable method for the straightforward synthesis of functionalized polyolefins, the corresponding nickel‐based catalysts have suffered from poor thermal tolerance and low molecular weight of the polymers formed. Herein, we report a series of neutral nickel complexes bearing imidazo[1,5‐a]quinolin‐9‐olate‐1‐ylidene (IzQO) ligands. The Ni/IzQO system can catalyze ethylene polymerization at 50–100 °C with reasonable activity in the absence of any cocatalyst, whereas most known nickel‐based catalysts are deactivated at this temperature range. The Ni/IzQO catalyst was successfully applied to the copolymerization of ethylene with allyl monomers to obtain the corresponding copolymers with the highest molecular weight reported for a Ni‐catalyzed system.  相似文献   

11.
A one‐pot green method for the synthesis of palladium nanoparticles (Pd‐NPs) supported on Pistacia atlantica kurdica (P. a. kurdica) gum is described. This natural gum is used as a reducing and stabilising agent. The formation of the Pd‐NPs/P. a. kurdica gum catalyst was verified using several techniques, such as Fourier transform infrared spectroscopy, ultraviolet–visible spectrophotometry, scanning and transmission electron microscopies, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, dynamic light scattering and wavelength‐dispersive X‐ray spectroscopy. The Pd‐NPs stabilised by P. a. kurdica gum were employed as a heterogeneous catalyst in Mizoroki–Heck and Suzuki–Miyaura cross‐coupling reactions at low palladium loading (0.1 mol%) under aerobic, phosphine‐free and ligand‐free conditions in water. Product yields of up to 98%, a facile work‐up, no evidence of leached palladium from the catalyst surface and smooth recovery of the catalyst, which can be reused at least eight times, confirm the efficiency of the catalysts in the reactions investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Recently, acid–base bifunctional catalysts have been considered due to their abilities, such as the simultaneous activation of electrophilic and nucleophilic species and their high importance in organic syntheses. However, the synthesis of acid–base catalysts is problematic due to the neutralization of acidic and basic groups. This work reports a facial approach to solve this problem via the synthesis of a novel bifunctional polymer using inexpensive materials and easy methods. In this way, at the first step, heterogeneous poly (styrene sulfonic acid‐n‐vinylimidazole) containing pentaerythritol tetra‐(3‐mercaptopropionate) (PETMP) and trimethylolpropane trimethacrylate (TMPTMA) cross‐linkers were synthesized in the pores of a mesoporous silica structure using click reaction as a novel bifunctional acid–base catalyst. After that, Ni‐Pd nanoparticles supported on poly (styrenesulfonic acid‐n‐vinylimidazole)/KIT‐6 as a novel trifunctional heterogeneous acid–base‐metal catalyst was prepared. The prepared catalysts were characterized by various techniques like FT‐IR, TGA, ICP‐AES, DRS‐UV, TEM, FE‐SEM, EDS‐Mapping, and XRD. The synthesized catalysts were efficiently used as bifunctional/trifunctional catalysts for one‐pot, deacetalization‐Knoevenagel condensation and one‐pot, three‐step and a sequential reaction containing deacetalization‐Knoevenagel condensation‐reduction reaction. It is important to note that the synthesized catalyst showing high chemo‐selectivity for the reduction of nitro group, alkenyl double bond and ester group in the presence of nitrile. Moreover, it was found that the different nanoparticles including Ni, Pd, and alloyed Ni‐Pd showing different chemo‐selectivity and catalytic activity in the reaction.  相似文献   

13.
The effects of heteroatom‐containing ferrocene catalysts on the materials produced from chemical vapour deposition (CVD) floating catalyst synthesis were investigated. Specifically, the influence of nitrogen‐ and oxygen‐containing ferrocenoyl imidazolide and (N‐phenylcarbamoyl)ferrocene, and sulfur‐ and oxygen‐containing S,S‐bis(ferrocenylmethyl)dithiocarbonate on the structural morphology and distribution of the products as well as properties such as the thermal stability and crystallinity were studied. In addition, the influence of reaction parameters such as catalyst concentration and temperature were also investigated. The nitrogen‐containing catalysts produced N‐doped multi‐walled carbon nanotubes (N‐MWCNTs), whereas the sulfur‐containing catalyst produced primarily nano‐ and microspheres. A concentration of 2.5 wt% ferrocenoyl imidazolide was shown to be optimal for the synthesis of MWCNTs at 850 °C, with very low metal iron residue, highest thermal stability and highest yield (95%). In general, bamboo compartment length for N‐doped MWCNTs increased with temperature. Crystallinity trends were shown to be independent of catalyst and catalyst concentration in all cases and only dependent on temperature. The average diameter for MWCNTs was shown to be dependent on temperature, choice of catalyst and catalyst concentration in all cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon–carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α‐diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92–99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α‐diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein‐based catalysts.  相似文献   

15.
Controllable synthesis of well‐defined supported intermetallic catalysts is desirable because of their unique properties in physical chemistry. To accurately pinpoint the evolution of such materials at an atomic‐scale, especially clarification of the initial state under a particular chemical environment, will facilitate rational design and optimal synthesis of such catalysts. The dynamic formation of a ZnO‐supported PdZn catalyst is presented, whereby detailed analyses of in situ transmission electron microscopy, electron energy‐loss spectroscopy, and in situ X‐ray diffraction are combined to form a nanoscale understanding of PdZn phase transitions under realistic catalytic conditions. Remarkably, introduction of atoms (H and Zn in sequence) into the Pd matrix was initially observed. The resultant PdHx is an intermediate phase in the intermetallic formation process. The evolution of PdHx in the PdZn catalyst initializes at the PdHx/ZnO interfaces, and proceeds along the PdHx ?111? direction.  相似文献   

16.
A novel type of highly efficient chiral sulfinamide bisphosphine catalysts (Wei‐Phos) were developed. These could be easily prepared from commercially available starting materials. Wei‐Phos has shown good performance in the very challenging intermolecular cross‐Rauhut–Currier reactions of vinyl ketones and 3‐acyl acrylates or 2‐ene‐1,4‐diones, leading to the R‐C products in high yields with up to 99 % ee under 2.5–5 mol% catalyst loading. The highly regio‐ and enantio‐selective cross‐Rauhut–Currier reactions of 2‐ene‐1,4‐diones and vinyl ketone have yet reported so far.  相似文献   

17.
Introduction of an L ‐amino acid as a spacer and a urea‐forming moiety in a polymer‐supported bifunctional urea–primary amine catalyst, based on (1R, 2R)‐(+)‐1,2‐diphenylethylenediamine, significantly improves the catalyst’s activity and stereoselectivity in the asymmetric addition of ketones and aldehydes to nitroolefins. Yields and enantioselectivities, unprecedented for immobilized catalysts, were obtained with such challenging donors as acetone, cyclopentanone, and α,α‐disubstituted aldehydes, which usually perform inadequately in this reaction (particularly when a secondary‐amine‐based catalyst is used). Remarkably, though in the examined catalysts the D ‐amino acids as spacers were significantly inferior to the L isomers, for the chosen configuration of the diamine (match–mismatch pairs) the size of the side chain of the amino acid hardly influenced the enantioselectivity of the catalyst. These results, combined with the reactivity profile of the catalysts with substrates bearing two electron‐withdrawing groups and the behavior of the catalysts’ analogues based on tertiary (rather than primary) amine, suggest an enamine‐involving addition mechanism and a particular ordered C? C bond‐forming transition state as being responsible for the catalytic reactions with high enantioselectivity.  相似文献   

18.
A novel type of highly efficient chiral sulfinamide bisphosphine catalysts (Wei‐Phos) were developed. These could be easily prepared from commercially available starting materials. Wei‐Phos has shown good performance in the very challenging intermolecular cross‐Rauhut–Currier reactions of vinyl ketones and 3‐acyl acrylates or 2‐ene‐1,4‐diones, leading to the R‐C products in high yields with up to 99 % ee under 2.5–5 mol% catalyst loading. The highly regio‐ and enantio‐selective cross‐Rauhut–Currier reactions of 2‐ene‐1,4‐diones and vinyl ketone have yet reported so far.  相似文献   

19.
Polymer‐supported pyridinium salts, prepared by quaternarization of crosslinked poly(4‐vinylpyridine) with alkyl halides, effectively catalyze the reaction of carbon dioxide (1 atm) and glycidyl phenyl ether (GPE) to afford the corresponding five‐membered cyclic carbonate (4‐phenoxymethyl‐1,3‐dioxolan‐2‐one). Poly(4‐vinylpyridine) quarternarized with alkyl bromides show high catalytic activities, and the reaction of carbon dioxide (1 atm) and GPE at 100 °C affords 4‐phenoxymethyl‐1,3‐dioxolan‐2‐one quantitatively in 6 h. The rate constant in the reaction of GPE and carbon dioxide in N‐methyl pyrrolidinone using poly(4‐vinylpyridine) quarternarized with n‐butyl bromide (kobs = 102 min?1) is almost comparable with those for homogeneous catalysts with good activities (e.g., LiI), and the rate of the reaction obeys the first‐order kinetics. A used catalyst may be recovered by centrifugation, and the recycled catalyst also promotes the reaction of GPE and carbon dioxide. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5673–5678, 2007  相似文献   

20.
A series of symmetrical chiral phase‐transfer catalysts with 4,4′,6,6′‐tetrasubstituted binaphthyl units have been designed, and these aryl‐ and trialkylsilyl‐substituted phase‐transfer catalysts, which included a highly fluorinated catalyst, were prepared. The chiral efficiency of these chiral phase‐transfer catalysts was investigated in the asymmetric alkylation of tert‐butylglycinate–benzophenone Schiff base under mild phase‐transfer conditions, and the eminent substituent effect of the 4,4′,6,6′‐positions of the binaphthyl units on enantioselection was observed. In particular, the OctMe2Si‐substituted catalyst was found to be highly efficient for the phase‐transfer alkylation of tert‐butylglycinate–benzophenone Schiff base with various alkyl halides, including sec‐alkyl halides. The highly fluorinated catalyst was also utilized as a recyclable chiral phase‐transfer catalyst by simple extraction with fluorous solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号