首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

2.
MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100–150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m2 g?1. The MoS2@C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2. The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g?1 and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g?1, as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2@C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2, and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass‐ and charge‐transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge‐transfer reaction and the diffusivity of the MoS2@C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li‐ion battery market.  相似文献   

3.
MoS2 holds great promise as high‐rate electrode for lithium‐ion batteries since its large interlayer can allow fast lithium diffusion in 3.0–1.0 V. However, the low theoretical capacity (167 mAh g?1) limits its wide application. Here, by fine tuning the lithiation depth of MoS2, we demonstrate that its parent layered structure can be preserved with expanded interlayers while cycling in 3.0–0.6 V. The deeper lithiation and maintained crystalline structure endows commercially micrometer‐sized MoS2 with a capacity of 232 mAh g?1 at 0.05 A g?1 and circa 92 % capacity retention after 1000 cycles at 1.0 A g?1. Moreover, the enlarged interlayers enable MoS2 to release a capacity of 165 mAh g?1 at 5.0 A g?1, which is double the capacity obtained under 3.0–1.0 V at the same rate. Our strategy of controlling the lithiation depth of MoS2 to avoid fracture ushers in new possibilities to enhance the lithium storage of layered transition‐metal dichalcogenides.  相似文献   

4.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

5.
Hierarchical and hollow nanostructures have recently attracted considerable attention because of their fantastic architectures and tunable property for facile lithium ion insertion and good cycling stability. In this study, a one‐pot and unusual carving protocol is demonstrated for engineering hollow structures with a porous shell. Hierarchical TiO2 hollow spheres with nanosheet‐assembled shells (TiO2 NHS) were synthesized by the sequestration between the titanium source and 2,2′‐bipyridine‐5,5′‐dicarboxylic acid, and kinetically controlled etching in trifluoroacetic acid medium. In addition, annealing such porous nanostructures presents the advantage of imparting carbon‐doped functional performance to its counterpart under different atmospheres. Such highly porous structures endow very large specifics surface area of 404 m2 g?1 and 336 m2 g?1 for the as‐prepared and calcination under nitrogen gas. C/TiO2 NHS has high capacity of 204 mA h g?1 at 1 C and a reversible capacity of 105 mA h g?1 at a high rate of 20 C, and exhibits good cycling stability and superior rate capability as an anode material for lithium‐ion batteries.  相似文献   

6.
Nanometer‐sized flakes of MnV2O6 were synthesized by a hydrothermal method. No surfactant, expensive metal salt, or alkali reagent was used. These MnV2O6 nanoflakes present a high discharge capacity of 768 mA h g?1 at 200 mA g?1, good rate capacity, and excellent cycling stability. Further investigation demonstrates that the nanoflake structure and the specific crystal structure make the prepared MnV2O6 a suitable material for lithium‐ion batteries.  相似文献   

7.
Ion diffusion efficiency at the solid–liquid interface is an important factor for energy storage and adsorption from aqueous solution. Although K2Mn4O8 (KMO) exhibits efficient ion diffusion and ion‐exchange capacities, due to its high interlayer space of 0.70 nm, how to enhance its mass transfer performance is still an issue. Herein, novel layered KMO/reduced graphene oxide (RGO) nanocomposites are fabricated through the anchoring of KMO nanoplates on RGO with a mild solution process. The face‐to‐face structure facilitates fast transfer of lithium and lead ions; thus leading to excellent lithium storage and lead ion adsorption. The anchoring of KMO on RGO not only increases electrical conductivity of the layered nanocomposites, but also effectively prevents aggregation of KMO nanoplates. The KMO/RGO nanocomposite with an optimal RGO content exhibits a first cycle charge capacity of 739 mA h g?1, which is much higher than that of KMO (326 mA h g?1). After 100 charge–discharge cycles, it still retains a charge capacity of 664 mA h g?1. For the adsorption of lead ions, the KMO/RGO nanocomposite exhibits a capacity of 341 mg g?1, which is higher than those of KMO (305 mg g?1) and RGO (63 mg g?1) alone.  相似文献   

8.
Two‐dimensional metal sulfides and their hybrids are emerging as promising candidates in various areas. Yet, it remains challenging to synthesize high‐quality 2D metal sulfides and their hybrids, especially iso‐component hybrids, in a simple and controllable way. In this work, a low‐temperature selective solid‐liquid sulfidation growth method has been developed for the synthesis of CuS nanoflakes and their hybrids. CuS nanoflakes of about 20 nm thickness and co‐component hybrids CuOx/CuS with variable composition ratios derived from different sulfidation time are obtained after the residual sulfur removal. Besides, benefiting from the mild low‐temperature sulfidation conditions, selective sulfidation is realized between Cu and Fe to yield iso‐component FeOx/CuS 2D nanoflakes of about 10–20 nm thickness, whose composition ratio is readily tunable by controlling the precursor. The as‐synthesized FeOx/CuS nanoflakes demonstrate superior lithium storage performance (i. e., 707 mAh g?1 at 500 mA g?1 and 627 mAh g?1 at 1000 mA g?1 after 450 cycles) when tested as anode materials in LIBs owing to the advantages of the ultrathin 2D nanostructure as well as the lithiation volumetric strain self‐reconstruction effect of the co‐existing two phases during charging/discharging processes.  相似文献   

9.
MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high‐performance anode in Na‐ion batteries. By controlling the cut‐off voltage to the range of 0.4–3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g?1 at 0.05 A g?1, 300 mAh g?1 at 1 A g?1, and 195 mAh g?1 at 10 A g?1. An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na+ storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na+ ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high‐rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na‐ion batteries.  相似文献   

10.
We report a novel strategy for the hierarchical assembly of Ag nanoparticles (NPs) on MoS2 nanosheets through coordination by using a multifunctional organic ligand. The presence of Ag NPs on the surface of MoS2 nanosheets inhibits their agglomeration, thereby providing increased interlayer spacing for easy Li+ ion intercalation. Such a unique hybrid architecture also ensures sufficient percolation pathways on the whole surface of the MoS2 nanosheets. Moreover, the high rigidity and low deformability of the Ag NPs effectively preserve the hybrid architecture during the charge–discharge process, which translates into a high cycle stability. A prominent synergistic effect between MoS2 and Ag is witnessed. When the Ag content is only 5 wt %, the Ag–MoS2 hybrid delivers a reversible capacity as high as 920 mA h g?1 at a current density of 100 mA g?1, making the Ag–MoS2 hybrid an attractive candidate for next‐generation LIBs.  相似文献   

11.
Two-dimensional molybdenum disulfide (MoS2) has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity, but its rapid capacity decay owing to poor conductivity, structure pulverization, and polysulfide dissolution presents significant challenges in practical applications. Herein, triple-layered hollow spheres in which MoS2 nanosheets are fully encapsulated between inner carbon and outer nitrogen-doped carbon (NC) were fabricated. Such an architecture provides high conductivity and efficient lithium-ion transfer. Moreover, the NC shell prevents aggregation and exfoliation of MoS2 nanosheets and thus maintains the integrity of the nanostructure during the charge/discharge process. As anode materials for LIBs, the C@MoS2@NC hollow spheres deliver a high reversible capacity (747 mA h g−1 after 100 cycles at 100 mA g−1) and excellent long-cycle performance (650 mA h g−1 after 1000 cycles at 1.0 A g−1), which confirm its potential for high-performance LIBs.  相似文献   

12.
Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three‐dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m2 g?1), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium‐ion batteries, a SnO2@OMC composite material can deliver an initial charge capacity of 943 mAh g?1 and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g?1, even exhibit a capacity of 503 mA h g?1 after 100 cycles at 160 mA g?1. In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium‐ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.  相似文献   

13.
Highly uniform Mo–glycerate solid spheres are synthesized for the first time through a solvothermal process. The size of these Mo–glycerate spheres can be easily controlled in the range of 400–1000 nm by varying the water content in the mixed solvent. As a precursor, these Mo–glycerate solid spheres can be converted into hierarchical MoS2 hollow nanospheres through a subsequent sulfidation reaction. Owing to the unique ultrathin subunits and hollow interior, the as‐prepared MoS2 hollow nanospheres exhibit appealing performance as the anode material for lithium‐ion batteries. Impressively, these hierarchical structures deliver a high capacity of about 1100 mAh g?1 at 0.5 A g?1 with good rate retention and long cycle life.  相似文献   

14.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3?x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g?1) and 179.3 mAh g?1 (1 A g?1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.  相似文献   

15.
Hierarchically structured tin oxide/reduced graphene oxide (RGO)/carbon composite powders are prepared through a one‐pot spray pyrolysis process. SnO nanoflakes of several hundred nanometers in diameter and a few nanometers in thickness are uniformly distributed over the micrometer‐sized spherical powder particles. The initial discharge and charge capacities of the tin oxide/RGO/carbon composite powders at a current density of 1000 mA g?1 are 1543 and 1060 mA h g?1, respectively. The discharge capacity of the tin oxide/RGO/carbon composite powders after 175 cycles is 844 mA h g?1, and the capacity retention measured from the second cycle is 80 %. The transformation during cycling of SnO nanoflakes, uniformly dispersed in the tin oxide/RGO/carbon composite powder, into ultrafine nanocrystals results in hollow nanovoids that act as buffers for the large volume changes that occur during cycling, thereby improving the cycling and rate performances of the tin oxide/RGO/carbon composite powders.  相似文献   

16.
Low storage capacity and poor cycling stability are the main drawbacks of the electrode materials for sodium‐ion (Na‐ion) batteries, due to the large radius of the Na ion. Here we show that micro‐structured molybdenum disulfide (MoS2) can exhibit high storage capacity and excellent cycling and rate performances as an anode material for Na‐ion batteries by controlling its intercalation depth and optimizing the binder. The former method is to preserve the layered structure of MoS2, whereas the latter maintains the integrity of the electrode during cycling. A reversible capacity of 90 mAh g?1 is obtained on a potential plateau feature when less than 0.5 Na per formula unit is intercalated into micro‐MoS2. The fully discharged electrode with sodium alginate (NaAlg) binder delivers a high reversible capacity of 420 mAh g?1. Both cells show excellent cycling performance. These findings indicate that metal chalcogenides, for example, MoS2, can be promising Na‐storage materials if their operation potential range and the binder can be appropriately optimized.  相似文献   

17.
Confined transformation of assembled two‐dimensional MXene (titanium carbide) and reduced graphene oxide (rGO) nanosheets was employed to prepare the free‐standing films of the integrated ultrathin sodium titanate (NTO)/potassium titanate (KTO) nanosheets sandwiched between graphene layers. The ultrathin Ti‐based nanosheets reduce the diffusion distance while rGO layers enhance conductivity. Incorporation of graphene into the titanate films produced efficient binder‐free anodes for ion storage. The resulting flexible NTO/rGO and KTO/rGO electrodes exhibited excellent rate performances and long cycling stability characterized by reversible capacities of 72 mA h g?1 at 5 A g?1 after 10000 cycles and 75 mA h g?1 after 700 cycles at 2 A g?1 for sodium and potassium ion batteries, respectively. These results demonstrate the superiority of the unique sandwich‐type electrodes.  相似文献   

18.
Sodium‐ion energy storage, including sodium‐ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium‐ion energy storage. It is an intriguing prospect, especially for large‐scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d‐spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g?1 over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g?1 over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1–2.5 V.  相似文献   

19.
The development of suitable anode materials is far from satisfactory and is a major scientific challenge for a competitive sodium‐ion battery technology. Metal sulfides have demonstrated encouraging results, but still suffer from sluggish kinetics and severe capacity decay associated with the phase change. Herein we show that rational electrode design, that is, building efficient electron/ion mixed‐conducting networks, can overcome the problems resulting from conversion reactions. A general strategy for the preparation of hierarchical carbon‐coated metal sulfide (MS?C) spheres through thermal sulfurization of metal glycerate has been developed. We demonstrate the concept by synthesizing highly uniform hierarchical carbon coated vanadium sulfide (V2S3?C) spheres, which exhibit a highly reversibly sodium storage capacity of 777 mAh g?1 at 100 mA g?1, excellent rate capability (410 mAh g?1 at 4000 mA g?1), and impressive cycling ability.  相似文献   

20.
Nanostructured hybrid metal sulfides have attracted intensive attention due to their fascinating properties that are unattainable by the single‐phased counterpart. Herein, we report an efficient approach to construct cobalt sulfide/molybdenum disulfide (Co9S8/MoS2) wrapped with reduced graphene oxide (rGO). The unique structures constructed by ultrathin nanosheets and synergetic effects benefitting from bimetallic sulfides provide improved lithium ions reaction kinetics, and they retain good structural integrity. Interestingly, the conductive rGO can facilitate electron transfer, increase the electronic conductivity and accommodate the strain during cycling. When evaluated as anode materials for lithium‐ion batteries (LIBs), the resultant reduced graphene oxide‐coated cobalt sulfide/molybdenum disulfide (Co9S8/MoS2@rGO) nanotubes deliver high specific capacities of 1140, 948, 897, 852, 820, 798 and 784 mAh g?1 at the various discharging current densities of 0.2, 0.5, 1, 2, 3, 4 and 5 A g?1, respectively. In addition, they can maintain an excellent cycle stability with a discharge capacity of 807 mAh g?1 at 0.2 A g?1 after 70 cycles, 787 mAh g?1 at 1 A g?1 after 180 cycles and 541 mAh g?1 at 2 A g?1 after 200 cycles. The proposed method may offer fundamental understanding for the rational design of other hybrid functional composites with high Li‐storage properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号