Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures. 相似文献
Cage me! A linear dumbbell‐shaped bipyridinium molecule can template cage formation around itself through sixfold imine bond formation to give an interlocked [2]rotaxane as the single product (see picture). This highly efficient [2+3] clipping occurs despite the symmetry mismatch between the template and the formed macrobicycle.
Two‐component self‐assembly is a promising approach to construct functional nanomaterials. Interaction of a flexible guanidiniocarbonyl pyrrole tetra‐cation ( 1 ) with naphthalene diimide dicarboxylic acid (NDIDC) in aqueous DMSO leads to the formation of supramolecular networks. First, the carboxylate groups of NDIDC bind to the guanidiniocarbonyl pyrrole cations of 1 in a 1:2 stoichiometry. Further π–π induced aggregation then leads to 3D networks, as established by dynamic light scattering studies (DLS), NMR, fluorescence titration, viscosity measurements, AFM, and TEM microscopy. Due to ion pairing, the resulting aggregates can be switched between the monomers and the aggregates reversibly using external stimuli like protonation or deprotonation. At high concentration, a stable colloidal solution is formed, which shows an extensive Tyndall effect. Increasing the concentrations even further leads to formation of a supramolecular gel. 相似文献
Dynamic covalent synthesis! Intramolecular hydrogen‐bonding induces amino‐ and aldehyde‐appended aryl amides to adopt a rigid “V”‐shaped conformation. As a result, stable two‐layered capsules can be assembled quantitatively through the one‐step formation of six imine bonds. The new capsules form complexes with aliphatic diammonium ions to give unique two‐layered pseudo[3]rotaxanes (see figure).
Extensive research has been devoted to the chemical manipulation of carbon nanotubes. The attachment of molecular fragments through covalent‐bond formation produces kinetically stable products, but implies the saturation of some of the C? C double bonds of the nanotubes. Supramolecular modification maintains the structure of the SWNTs but yields labile species. Herein, we present a strategy for the synthesis of mechanically interlocked derivatives of SWNTs (MINTs). In the key rotaxane‐forming step, we employed macrocycle precursors equipped with two π‐extended tetrathiafulvalene SWNT recognition units and terminated with bisalkenes that were closed around the nanotubes through ring‐closing metathesis (RCM). The mechanically interlocked nature of the derivatives was probed by analytical, spectroscopic, and microscopic techniques, as well as by appropriate control experiments. Individual macrocycles were observed by HR STEM to circumscribe the nanotubes. 相似文献
The synthesis, photophysical, and electrochemical attributes of a novel class of boron difluorides containing an aromatic‐fused alicyclic/hetero‐alicyclic ring built on a β‐iminoenamine chromophoric backbone are reported. The compounds displayed large Stokes shifts (86–121 nm), and were emissive in the solid state. The quantum yields obtained in solution at room temperature were unusually lower by an order of magnitude compared to those in the solid state. Some of the tested compounds displayed aggregation‐induced emission (AIE). Single crystal XRD analyses revealed a lack of interplanar π–π interactions, which are presumed to be absent owing to non‐planarity of the alicyclic component in the molecule. For most of the studied compounds, time‐dependent DFT (TD‐DFT) calculations invariably reveal intramolecular charge transfer (π–π*) characteristics with the frontier orbitals concentrated on the boron–nitrogen heterocycle. The participation of boron and fluorine atoms was found to be negligible. 相似文献
Substituting N‐methylpyrrole for N‐methyindole in secondary‐amine‐catalysed Friedel–Crafts reactions leads to a curious erosion of enantioselectivity. In extreme cases, this substrate dependence can lead to an inversion in the sense of enantioinduction. Indeed, these closely similar transformations require two structurally distinct catalysts to obtain comparable selectivities. Herein a focussed molecular editing study is disclosed to illuminate the structural features responsible for this disparity, and thus identify lead catalyst structures to further exploit this selectivity reversal. Key to effective catalyst re‐engineering was delineating the non‐covalent interactions that manifest themselves in conformation. Herein we disclose preliminary validation that intermolecular aromatic (CH–π and cation–π) interactions between the incipient iminium cation and the indole ring system is key to rationalising selectivity reversal. This is absent in the N‐methylpyrrole alkylation, thus forming the basis of two competing enantio‐induction pathways. A simple L ‐valine catalyst has been developed that significantly augments this interaction. 相似文献
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems. 相似文献
9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by 1H NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the ‘twisted’ conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CHπ interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CHπ interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. 相似文献
Electrostatic and charge‐transfer contributions to CH–π complexes can be modulated by attaching electron‐withdrawing substituents to the carbon atom. While clearly stabilizing in the gas phase, the outcome of this chemical modification in water is more difficult to predict. Herein we provide a definitive and quantitative answer to this question employing a simple strategy based on dynamic combinatorial chemistry. 相似文献
An intelligent molecular hydrogel with a volume phase transition was constructed to regulate the chiral packing of a well‐known cyanine dye on a dynamically self‐assembled chiral nanofiber by using a pH trigger. During the shrinkage of the gel, the chiral nanofiber hierarchically assembled into a superhelix and simultaneously drove the dye molecules to stack, from a predominantly monomer form, in an unexpected helical H‐aggregation manner. Through such a transformation, the supramolecular chirality of the system was significantly enhanced and a new property of visual discrimination for chiral amines emerged. 相似文献
The through‐space polar–π interactions between pyridinium ion and the adjacent aromatic rings in 2,6‐diarylpyridines affect the pKa values. Hammett analysis illustrates that the basicity of pyridines correlates well with the sigma values of the substituents at the para position of the flanking aryl rings. 相似文献
Tetrahomocorona[2]arene[2]tetrazines were constructed by means of a fragment coupling strategy based on nucleophilic aromatic substitution reaction starting from 3,6‐dichlorotetrazine and o‐, m‐, and p‐bis(hydroxymethyl)benzenes. The unprecedented macrocycles gave rectangular box‐like cavities with tunable cavity sizes and deficient electronic properties depending on the substitution pattern of phenylene. Due to anion–π interactions, they formed complexes selectively with azide and thiocyanate owing to complementary shapes between host and guest. 相似文献