首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.  相似文献   

2.
3.
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well‐defined three‐dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein‐like structures in water. However, short peptides can be induced to fold into protein‐like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine‐tune three‐dimensional structure. Such constrained cyclic peptides can have protein‐like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three‐dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.  相似文献   

4.
The combination of supramolecular aggregation of collagen model peptides with reversible covalent end-capping of the formed triple helix in a single experimental set-up yielded minicollagens, which were characterized by a single melting temperature. In spite of the numerous possible reaction intermediates, a specific synthetic collagen with a leading, middle and trailing strand is formed in a highly cooperative self-assembly process.  相似文献   

5.
6.
Ribosomally synthesized and post‐translationally modified peptides (RiPPs) are a major class of natural products with a high degree of structural diversity and a wide variety of bioactivities. Understanding the biosynthetic machinery of these RiPPs will benefit the discovery and development of new molecules with potential pharmaceutical applications. In this Concept article, we discuss the features of the biosynthetic pathways to different RiPP classes, and propose mechanisms regarding recognition of the precursor peptide by the post‐translational modification enzymes. We propose that the leader peptides function as allosteric regulators that bind the active form of the biosynthetic enzymes in a conformational selection process. We also speculate how enzymes that generate polycyclic products of defined topologies may have been selected for during evolution.  相似文献   

7.
Metal complexes are increasingly explored as imaging probes in amyloid peptide related pathologies. We report the first detailed study on the mechanism of interaction between a metal complex and both the monomer and the aggregated form of Aβ1–40 peptide. We have studied lanthanide(III) chelates of two PiB‐derivative ligands (PiB=Pittsburgh compound B), L1 and L2, differing in the length of the spacer between the metal‐complexing DO3A macrocycle (DO3A= 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid) and the peptide‐recognition PiB moiety. Surface plasmon resonance (SPR) and saturation transfer difference (STD) NMR spectroscopy revealed that they both bind to aggregated Aβ1–40 (KD=67–160 μM ), primarily through the benzothiazole unit. HSQC NMR spectroscopy on the 15N‐labeled, monomer Aβ1–40 peptide indicates nonsignificant interaction with monomeric Aβ. Time‐dependent circular dichroism (CD), dynamic light scattering (DLS), and TEM investigations of the secondary structure and of the aggregation of Aβ1–40 in the presence of increasing amounts of the metal complexes provide coherent data showing that, despite their structural similarity, the two complexes affect Aβ fibril formation distinctly. Whereas GdL1, at higher concentrations, stabilizes β‐sheets, GdL2 prevents aggregation by promoting α‐helical structures. These results give insight into the behavior of amyloid‐targeted metal complexes in general and contribute to a more rational design of metal‐based diagnostic and therapeutic agents for amyloid‐ associated pathologies.  相似文献   

8.
Single‐walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near‐infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red‐shifted emission peak. Here, we report on quantum defects, introduced using light‐driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine‐containing proteins such as a GFP‐binding nanobody. In addition, an Fmoc‐protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.  相似文献   

9.
10.
Enkephalins are efficient pain‐relief drugs that bind to transmembrane opioid receptors. One key structural parameter that governs the pharmacological activity of these opioid peptides and is typically determined from condensed‐phase structures is the distance between the aromatic rings of their Tyr and Phe residues. We use resonance energy transfer, detected by a combination of cold ion spectroscopy and mass spectrometry, to estimate the Tyr–Phe spacing for enkephalins in the gas phase. In contrast to the condensed‐phase structures, these distances appear to differ substantially in enkephalins with different pharmacological efficiencies, suggesting that gas‐phase structures might be a better pharmacophoric metric for ligand peptides.  相似文献   

11.
The investigation of biological processes by chemical methods, commonly referred to as chemical biology, often requires chemical access to biologically relevant macromolecules such as peptides and proteins. Building upon solid‐phase peptide synthesis, investigations have focused on the development of chemoselective ligation and modification strategies to link synthetic peptides or other functional units to larger synthetic and biologically relevant macromolecules. This Review summarizes recent developments in the field of chemoselective ligation and modification strategies and illustrates their application, with examples ranging from the total synthesis of proteins to the semisynthesis of naturally modified proteins.  相似文献   

12.
Antimicrobial peptides (AMPs) are antibiotics with the potential to address antimicrobial resistance. However, their translation to the clinic is hampered by issues such as off-target toxicity and low stability in biological media. Stimuli-responsive delivery from polyelectrolyte complexes offers a simple avenue to address these limitations, wherein delivery is triggered by changes occurring during microbial infection. The review first provides an overview of pH-responsive delivery, which exploits the intrinsic pH-responsive nature of polyelectrolytes as a mechanism to deliver these antimicrobials. The examples included illustrate the challenges faced when developing these systems, in particular balancing antimicrobial efficacy and stability, and the potential of this approach to prepare switchable surfaces or nanoparticles for intracellular delivery. The review subsequently highlights the use of other stimuli associated with microbial infection, such as the expression of degrading enzymes or changes in temperature. Polyelectrolyte complexes with dual stimuli-response based on pH and temperature are also discussed. Finally, the review presents a summary and an outlook of the challenges and opportunities faced by this field. This review is expected to encourage researchers to develop stimuli-responsive polyelectrolyte complexes that increase the stability of AMPs while providing targeted delivery, and thereby facilitate the translation of these antimicrobials.  相似文献   

13.
Lasso peptides belong to the class of ribosomally synthesized and post‐translationally modified peptides. Their common distinguishing feature is an N‐terminal macrolactam ring that is threaded by the C‐terminal tail. This lasso fold is maintained through steric interactions. The isolation and characterization of xanthomonins I–III, the first lasso peptides featuring macrolactam rings consisting of only seven amino acids, is now presented. The crystal structure of xanthomonin I and the NMR structure of xanthomonin II were also determined. A total of 25 variants of xanthomonin II were generated to probe different aspects of the biosynthesis, stability, and fold maintenance. These mutational studies reveal the limits such a small ring imposes on the threading and show that every plug amino acid larger than serine is able to maintain a heat‐stable lasso fold in the xanthomonin II scaffold.  相似文献   

14.
15.
Antimicrobial peptides and proteins represent an important class of plant defensive compounds against pathogens and provide a rich source of lead compounds in the field of drug discovery. We describe the effective preparation of the cysteine‐rich snakin‐1 and ‐2 antimicrobial peptides by using a combination of solid‐phase synthesis and native chemical ligation. A subsequent cysteine/cystine mediated oxidative folding to form the six internal disulfide bonds concurrently gave the folded proteins in 40–50 % yield. By comparative evaluation of mass spectrometry, HPLC, biological data and trypsin digest mapping of folded synthetic snakin‐2 compared to natural snakin‐2, we demonstrated that synthetic snakin‐2 possesses full antifungal activity and displayed similar chromatographic behaviour to natural snakin‐2. Trypsin digest analysis allowed tentative assignment of three of the purported six disulfide bonds.  相似文献   

16.
《Analytical letters》2012,45(12):1429-1445
Abstract

Model peptides, Gly-Gly-Lys-Arg, Arg-Lys-Asp-Val-Tyr, and Pro-Gly-Lys-Ala-Arg were reductively alkylated with [2H6]acetone and sodium borohydride to assess the effects on peptide behavior. Lysine residues were converted to ?-N-isopropyllysine which eluted between phenylalanine and histidine on amino acid analysis. Amino terminal groups were also modified to an extent which depended on the particular peptide (glycine 100%, arginine 30%, and proline 10%-20%). High voltage paper electrophoresis of native and isopropylated peptides showed similar properties except for minor decreases in the mobility of the modified peptides due mainly to increased molecular weight. Isopropyllysine was not an effective substrate for trypsin, and α-N-isopropyl-amino acids did not form dansyl chloride derivatives. These findings should aid in the location, by peptide mapping techniques, of specific modified residues in reductively isopropylated proteins.  相似文献   

17.
Disclosed herein is the visible‐light‐promoted deaminative C(sp3)?H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional‐group tolerance provide a general strategy for the efficient preparation of unnatural α‐amino acids and precise modification of peptides with unnatural α‐amino‐acid residues. Mechanistic studies suggest that visible‐light‐promoted intermolecular charge transfer within a glycine–Katritzky salt electron donor‐acceptor (EDA) complex induces a single‐electron transfer process without the assistance of photocatalyst.  相似文献   

18.
19.
A novel optical biosensor technique is being developed for the early detection of myocardial infarction by utilizing the distance-dependent chemical transduction method of fluorescence resonance energy transfer (FRET). The FRET process requires two fluorophores termed the donor and the acceptor. When in close proximity, the donor absorbs energy from the excitation source and non-radiatively transfers the energy to the acceptor, which in turn emits fluorescent energy. This distance-dependent property was utilized to detect conformational changes when antibodies combine with their respective antigens. The fluorophores were conjugated to an antibody–Protein A complex and then immobilized via silanization to the distal ends of optical fibers. Three different antibody–Protein A complexes were immobilized: generic IgG, cardiac Troponin T (cTnT), and cardiac Troponin I (cTnI). Results showed that upon the addition of the specific antigens, the antibodies underwent a conformational change, reducing the distance between the FRET fluorophores. The generic IgG responded to 233 nM antigens, whereas the cTnT biosensor had a limit of detection of 75 nM, and the cTnI biosensors had a limit of detection of 94 nM.  相似文献   

20.
In this study, a remarkably simple and direct strategy has been successfully developed to selectively label target cysteine residues in fully unprotected peptides and proteins. The strategy is based on the reaction between allenamides and the cysteine thiol, and proceeds swiftly in aqueous medium with excellent selectivity and quantitative conversion, thus forming a stable and irreversible conjugate. The combined simplicity and mildness of the process project allenamide as robust and versatile handles to target cysteines and has potential use in biological systems. Additionally, fluorescent‐labeling studies demonstrated that the installation of a C‐terminal allenamide moiety onto various molecules of interest may supply a new methodology towards the site‐specific labeling of cysteine‐containing proteins. Such a new labeling strategy may thus open a window for its application in the field of life sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号