首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activation of yellow arsenic is possible with the silylene [PhC(NtBu)2SiN(SiMe3)2] ( 1 ) and the disilene [(Me3Si)2N(η1-Me5C5)Si=Si(η1-Me5C5)N(SiMe3)2] ( 3 ). The reaction of As4 with 1 leads to the unprecedented As10 cage compound [(LSiN(SiMe3)2)3As10] ( 2 ; L=PhC(NtBu)2) with an As7 nortricyclane core stabilized by arsasilene moieties containing silicon(II)bis(trimethylsilyl)amide substituents. In contrast, the compound [Cp*{(SiMe3)2N}SiAs]2 ( 4 ) containing a butterfly-like diarsadisilabicyclo[1.1.0]butane unit is formed by the reaction of As4 with the disilene 3 . Both compounds were characterized by single-crystal X-ray diffraction analysis, NMR spectroscopy, and mass spectrometry. The reaction outcomes demonstrate the different reaction behavior of yellow arsenic (As4) compared to white phosphorus (P4) in the reactions with the corresponding silylenes and disilenes.  相似文献   

3.
4.
5.
The activation or heterolytic splitting of methane, a challenging substrate usually restricted to transition metals, has so far proven elusive in experimental frustrated Lewis pair (FLP) chemistry. In this article, we demonstrate, using density functional theory (DFT), that 1-aza-9-boratriptycene is a conceptually simple intramolecular FLP for the activation of methane. Systematic comparison with other FLP systems allows to gain insight into their reactivity with methane. The thermodynamics and kinetics of methane activation are interpreted by referring to the analysis of the natural charges and by employing the distortion-interaction/activation strain (DIAS) model. These showed that the nature of the Lewis base influences the selectivity over the reaction pathway, with N Lewis bases favoring the deprotonation mechanism and P bases the hydride abstraction one. The lower barrier of activation for 1-aza-9-boratriptycene and the higher products stability are due to a better interaction energy than its counterparts, itself due to electrostatic interactions with the methane moiety, favorable orbital overlaps allowed by the side-attack, and space proximity between the B and N atoms.  相似文献   

6.
The first halosilylene stable in solution was investigated by ab initio/NMR calculations (IGLO SOS-DFPT PW91/B2//B3LYP/6-31+G(d)). The delta (29)Si(calc) of (Me(3)Si)(3)CSiBr (446 ppm) does not agree with the measured NMR signal at 106 ppm assigned to the free halosilylene. From the possible silylene complexes in the reaction solution, two structures agree with the observed NMR signal: the (Me(3)Si)(3)CSiBr(2) anion (delta (29)Si(calc)=124 ppm) and the unsolvated and solvated complex of the anion with two Li(+) (delta (29)Si(calc)=117 and estimated 134 ppm). Additionally the delta (29)Si(calc) of alkylsilylenes, R-Si-X, ranging from 200 to 900 ppm are presented to guide NMR identification in future silylene synthesis.  相似文献   

7.
8.
The synthesis of the new bulky vinyllithium reagent (MeIPr=CH)Li, (MeIPr=[(MeCNDipp)2C]; Dipp=2,6-iPr2C6H3) is reported. This vinyllithium precursor was found to act as a general source of the anionic 2σ, 2π-electron donor ligand [MeIPr=CH]. Furthermore, a high-yielding route to the degradation-resistant SiII precursor MeIPr⋅SiBr2 is presented. The efficacy of (MeIPr=CH)Li in synthesis was demonstrated by the generation of a complete inorganic divinyltetrelene series (MeIPrCH)2E: (E=Si to Pb). (MeIPrCH)2Si: represents the first two-coordinate acyclic silylene not bound by heteroatom donors, with dual electrophilic and nucleophilic character at the SiII center noted. Cyclic voltammetry shows this electron-rich silylene to be a potent reducing agent, rivalling the reducing power of the 19-electron complex cobaltocene (Cp2Co).  相似文献   

9.
The synthesis and characterization of novel cis-1,2-disilylenylethene [cis-LSi{C(Ph)=C(H)}SiL] (2; L=PhC(NtBu)(2)) and a singlet delocalized biradicaloid [LSi(μ(2)-C(2)Ph(2))(2)SiL] (3) are described. Compound 2 was prepared by the reaction of [{PhC(NtBu)(2)}Si:](2) (1) with one equivalent of PhC[triple chemical bond]CH in toluene. Compound 3 was synthesized by the reaction of 1 with two equivalents of PhC[triple chemical bond]CPh in toluene. The results suggest that the reaction proceeds through an [LSi{C(Ph)==C(Ph)}SiL] intermediate, which then reacts with another molecule of PhC[triple chemical bond]CPh to form 3. Compounds 2 and 3 have been characterized by X-ray crystallography and NMR spectroscopy. X-ray crystallography and DFT calculations of 3 show that the singlet biradicals are stabilized by the amidinate ligand and the delocalization within the "Si(μ(2)-C(2)Ph(2))(2)Si" six-membered ring.  相似文献   

10.
Reduction of the neutral carbene tetrachlorosilane adduct (cAAC)SiCl4 (cAAC=cyclic alkyl(amino) carbene :C(CMe2)2(CH2)N(2,6‐iPr2C6H3) with potassium graphite produces stable (cAAC)3Si3, a carbene‐stabilized triatomic silicon(0) molecule. The Si?Si bond lengths in (cAAC)3Si3 are 2.399(8), 2.369(8) and 2.398(8) Å, which are in the range of Si?Si single bonds. Each trigonal pyramidal silicon atom of the triangular molecule (cAAC)3Si3 possesses a lone pair of electrons. Its bonding, stability, and electron density distributions were studied by quantum chemical calculations.  相似文献   

11.
The reaction of the dilithium salt of the enantiopure (S)-BINOL (1,1’-bi-2-naphthol) with two equivalents of the amidinate-stabilized chlorosilylene [LPhSiCl] (LPh=PhC(NtBu)2) led to the formation of the first example of a chiral cyclic silene species comprising an (S)-BINOL ligand. The reactivity of the Si=C bond was investigated by reaction with elemental sulfur, CO2 and HCl. The reaction with S8 led to a Si=C bond cleavage and concomitantly to a ring-opened product with imine and silanethione functional groups. The reaction with CO2 resulted in the cleavage of the CO2 molecule into a carbonyl group and an isolated O atom, while a new stereocenter is formed in a highly selective manner. According to DFT calculations, the [2+2] cycloaddition product is the key intermediate. Further reactivity studies of the chiral cyclic silene with HCl resulted in a stereoselective addition to the Si=C bond, while the fully selective formation of two stereocenters was achieved. The quantitative stereoselective addition of CO2 and HCl to a Si=C bond is unprecedented.  相似文献   

12.
13.
14.
15.
The first sulfite [{((nP,MeArO)3tacn)UIV}2(μ‐κ12‐SO3)] (tacn=triazacyclononane) and dithionite [{((nP,MeArO)3tacn)UIV}2(μ‐κ22‐S2O4)] complexes of uranium from reaction with gaseous SO2 have been prepared. Additionally, the reductive activation of CO2 was investigated with respect to the rare oxalate [{((nP,MeArO)3tacn)UIV}2(μ‐κ22‐C2O4)] formation. This ultimately provides the unique S2O42?/C2O42? and SO32?/CO32? complex pairs. All new complexes were characterized by a combination of single‐crystal X‐ray diffraction, elemental analysis, UV/Vis/NIR electronic absorption, IR vibrational, and 1H NMR spectroscopy, as well as magnetization (VT SQUID) studies. Moreover, density functional theory (DFT) calculations were carried out to gain further insight into the reaction mechanisms. All observations, together with DFT, support the assumption that SO2 and CO2 show similar (dithionite/oxalate) to analogous (sulfite/carbonate) activation behavior with uranium complexes.  相似文献   

16.
17.
The first N‐heterocyclic carbene adducts of arylchlorosilylenes are reported and compared with the homologous germanium compounds. The arylsilicon(II) chlorides SiArCl(Im‐Me4) [Ar=C6H3‐2,6‐Mes2 (Mes=C6H2‐2,4,6‐Me3), C6H3‐2,6‐Trip2 (Trip=C6H2‐2,4,6‐iPr3)] were obtained selectively on dehydrochlorination of the arylchlorosilanes SiArHCl2 with 1,3,4,5‐tetramethylimidazol‐2‐ylidene (Im‐Me4). The analogous arylgermanium(II) chlorides GeArCl(Im‐Me4) were prepared by metathetical exchange of GeCl2(Im‐Me4) with LiC6H3‐2,6‐Mes2 or addition of Im‐Me4 to GeCl(C6H3‐2,6‐Trip2). All compounds were fully characterized. Density functional calculations on ECl(C6H3‐2,6‐Trip2)(Im‐Me4), where E=Si, Ge, at different levels of theory show very good agreement between calculated and experimental bonding parameters, and NBO analyses reveal similar electronic structures of the two aryltetrel(II) chlorides. The low gas‐phase Gibbs free energy of bond dissociation of SiCl(C6H3‐2,6‐Trip2)(Im‐Me4) (Δ${G{{{\circ}\hfill \atop {\rm calcd}\hfill}}}$ =28.1 kJ mol?1) suggests that the carbene adducts SiArCl(Im‐Me4) may be valuable transfer reagents of the arylsilicon(II) chlorides SiArCl.  相似文献   

18.
By the reaction of [NacnacCuCH3CN] with white phosphorus (P4) and yellow arsenic (As4), the stabilization and enclosure of the intact E4 tetrahedra are realized and the disubstituted complexes [(NacnacCu)2(μ,η2:2‐E4)] ( 1 a : E=P, 1 b : E=As) are formed. The mono‐substituted complex [NacnacCu(η2‐P4)] ( 2 ), was detected by the exchange reaction of 1 a with P4 and was only isolated using low‐temperature work‐up. All products were comprehensively spectroscopically and crystallographically characterized. The bonding situation in the products as intact E4 units (E=P, As) was confirmed by theory and was experimentally proven by the pyridine promoted release of the bridging E4 tetrahedra in 1 .  相似文献   

19.
Unprecedented functionalized products with an η4‐P5 ring are obtained by the reaction of [Cp*Fe(η5‐P5)] ( 1 ; Cp*=η5‐C5Me5) with different nucleophiles. With LiCH2SiMe3 and LiNMe2, the monoanionic products [Cp*Fe(η4‐P5CH2SiMe3)]? and [Cp*Fe(η4‐P5NMe2)]?, respectively, are formed. The reaction of 1 with NaNH2 leads to the formation of the trianionic compound [{Cp*Fe(η4‐P5)}2N]3?, whereas the reaction with LiPH2 yields [Cp*Fe(η4‐P5PH2)]? as the main product, with {[Cp*Fe(η4‐P5)]2PH}2? as a byproduct. The calculated energy profile of the reactions provides a rationale for the formation of the different products.  相似文献   

20.
The importance of noncovalent interaction has gained attention in various domains covering drug and novel catalyst design. The present study mainly characterizes the role of hydrogen bond (H-bond) and other intermolecular interactions in different (1 : 1) complex analogues formed between the N-aryl-thiazol-2-ylidene (YR) and five proton donor (HX) molecules. The analysis of the singlet-triplet energy gap ( ) confirmed the stability of the singlet state for this class of N-aryl-thiazol-2-ylidenes than the triplet state. The interaction energy values of the YR-HX complexes follow the order: YR-NH3<YR-HCN<YR-H2O<YR-MeOH<YR-HF. In addition, substituting the H-atom of the N−H bond with bulky groups (−R) leads to an increase in the interaction energy of the YR-HX complexes. Hence, it was found that the replacement of N-atom in N-heterocyclic carbene (NHC) by S-atom forming N-aryl-thiazol-2-ylidene results in comparable intermolecular interactions with proton donor molecules similar to imidazole-2-ylidene (NHC). The current study enlightened the role of noncovalent interactions in carbene complexes with proton donor molecules. We hope that our work on carbene chemistry will pave the way for its application in the designing and synthesis of efficient catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号