首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions between the U‐shaped binuclear CuI complex A that bears short metal–metal distances and the cyano‐capped monotopic π‐conjugated ligands 1 – 5 that carry gradually bulkier polyaromatic terminal fragments lead to the formation of π‐stacked supramolecular assemblies 6 – 10 , respectively, in yields of 50–80 %. These derivatives have been characterized by multinuclear NMR spectroscopic analysis and X‐ray diffraction studies. Their solid‐state structures show the selective formation of U‐shaped supramolecular assemblies in which two monotopic π‐conjugated systems present large ( 6 , 7 , and 9 ) or medium ( 8 and 10 ) intramolecular π overlap, thus revealing π–π interactions. These assemblies self‐organize into head‐to‐tail π‐stacked dimers that in turn self‐assemble to afford infinite columnar π stacks. The nature, extent, and complexity of the intermolecular contacts within the head‐to‐tail π‐stacked dimer depend on the nature of the terminal polyaromatic fragment carried by the cyano‐capped monotopic ligand, but it does not alter the result of the self‐assembling process. These results demonstrate that the dinuclear molecular clip A that bears short metal–metal distances allows selective supramolecular assembly processes driven by the formation of intra‐ and intermolecular short π–π interactions in the resulting self‐assembled structures; thus, demonstrating that their shape is not only dictated by the symmetry of the building blocks. This approach opens perspectives toward the formation of extended π‐stacked columns based on dissymmetrical and functional π‐conjugated systems.  相似文献   

2.
π‐Stacked polymers, which consist of layered π‐electron systems in a polymer, can be expected to be used in molecular electronic devices. However, the construction of a stable π‐stacked structure in a polymer is considerably challenging because it requires sophisticated designs and precise synthetic methods. Herein, we present a novel π‐stacked architecture based on poly(quinolylene‐2,3‐methylene) bearing alanine derivatives as the side chain, obtained through the living cyclo‐copolymerization of an o‐allenylaryl isocyanide. In the resulting polymer, the neighboring quinoline rings of the main chain form a layered structure with π–π interactions, which is stabilized by intramolecular hydrogen bonds. The vicinal quinoline units form two independent helices and the whole molecule is a twisted‐tape structure. This structure is established on the basis of UV/CD spectra, theoretical calculations, and atomic‐force microscopy.  相似文献   

3.
We have designed and utilized a simple molecular recognition system to study the substituent effects in aromatic interactions. Recently, we showed that 3‐ and 3,5‐disubstituted benzoyl leucine diethyl amides with aromatic rings of varying electronic character organized into homochiral dimers in the solid state through a parallel displaced π–π interaction and two hydrogen bonds, but no such homochiral dimerization was observed for the unsubstituted case. This phenomenon supports the hypothesis that substituents stabilize π–π interactions regardless of their electronic character. To further investigate the origin of substituent effects for π–π interactions, we synthesized and crystallized a series of 4‐substituted benzoyl leucine diethyl amides. Surprisingly, only two of the 4‐substituted compounds formed homochiral dimers. A comparison among the 4‐substituted compounds that crystallized as homochiral dimers and their 3‐substituted counterparts revealed that there are differences in regard to the geometry of the aromatic rings with respect to each other, which depend on the electronic nature and location of the substituent. The crystal structures of the homochiral dimers that showed evidence of direct, local interactions between the substituents on the aromatic rings also displayed nonequivalent dihedral angles in the individual monomers. The crystallographic data suggests that such “flexing” may be the result of the individual molecules orienting themselves to maximize the local dipole interactions on the respective aromatic rings. The results presented here can potentially have broad applicability towards the development of molecular recognition systems that involve aromatic interactions.  相似文献   

4.
The mol­ecules of the title compound, C11H14BrNO2, are assembled into a two‐dimensional network by a combination of hydrogen bonds and stacking interactions. The phenyl rings are stacked along the c direction by displaced π–π interactions, forming a lipophilic layer. The aliphatic amide residues are interconnected along [100] by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming hydro­philic layers.  相似文献   

5.
Noncovalent interactions involving aromatic rings, such as π‐stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion‐corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzene???methane and cyclohexane???methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel‐displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non‐additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.  相似文献   

6.
The peptide N‐benzyloxycarbonyl‐L‐valyl‐L‐tyrosine methyl ester or NCbz‐Val‐Tyr‐OMe (where NCbz is N‐benzyloxycarbonyl and OMe indicates the methyl ester), C23H28N2O6, has an extended backbone conformation. The aromatic rings of the Tyr residue and the NCbz group are involved in various attractive intra‐ and intermolecular aromatic π–π interactions which stabilize the conformation and packing in the crystal structure, in addition to N—H...O and O—H...O hydrogen bonds. The aromatic π–π interactions include parallel‐displaced, perpendicular T‐shaped, perpendicular L‐shaped and inclined orientations.  相似文献   

7.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

8.
The title compound, C10H11BrO4, a useful precursor to pharmaceutically active isocoumarin and isochroman derivatives, crystallizes with two unique molecules in the asymmetric unit. A π–π stacking interaction links the planar molecules in the asymmetric unit. Additional π–π contacts stack pairs of molecules along the c axis. A feature of the crystal packing is the presence of a number of short Br...O contacts. A particularly unusual arrangement involves the formation of dimers, with pairs of Br...O contacts imposing a close Br...Br interaction and generating five‐membered rings within an eight‐membered ring formed by two Br...O contacts. Only two comparable arrangements have been reported previously. The Br...O contacts combine with weak C—H...O hydrogen bonds to form corrugated sheets of molecules approximately parallel to (001). These sheets are stacked along the c axis by π–π interactions to generate a three‐dimensional network.  相似文献   

9.
We report the self‐assembly of a new family of hydrophobic, bis(pyridyl) PtII complexes featuring an extended oligophenyleneethynylene‐derived π‐surface appended with six long (dodecyloxy ( 2 )) or short (methoxy ( 3 )) side groups. Complex 2 , containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt???Pt≈14 Å) in both nonpolar solvents and the solid state. Dispersion‐corrected PM6 calculations suggest that this organization is driven by cooperative π–π, C?H???Cl and π–Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π‐stacks (dPt???Pt≈4.4 Å) stabilized by multiple π–π and C?H???Cl contacts are obtained in the crystalline state for 3 lacking long side chains, as shown by X‐ray analysis and PM6 calculations. Our results reveal not only the key role of alkyl chain length in controlling self‐assembly modes but also show the relevance of Pt‐bound chlorine ligands as new supramolecular synthons.  相似文献   

10.
The formation of well‐defined finite‐sized aggregates represents an attractive goal in supramolecular chemistry. In particular, construction of discrete π‐stacked dye assemblies remains a challenge. Reported here is the design and synthesis of a novel type of discrete π‐stacked aggregate from two comparable perylenediimide (PDI) dyads ( PEP and PBP ). The criss‐cross PEP ‐ PBP dimers in solution and ( PBP ‐ PEP )‐( PEP ‐ PBP ) tetramers in the solid state are well elucidated using single‐crystal X‐ray diffraction, dynamic light scattering, and diffusion‐ordered NMR spectroscopy. Extensive π–π stacking between the PDI units of PEP and PBP as well as repulsive interactions of swallow‐tailed alkyl substituents are responsible for the selective formation of discrete dimer and tetramer stacks. Our results reveal a new approach to preparing discrete π stacks that are appealing for making assemblies with well‐defined optoelectronic properties.  相似文献   

11.
Self‐organization of organic molecules through weak noncovalent forces such as CH/π interactions and creation of large hierarchical supramolecular structures in the solid state are at the very early stage of research. The present study reports direct evidence for CH/π interaction driven hierarchical self‐assembly in π‐conjugated molecules based on custom‐designed oligophenylenevinylenes (OPVs) whose structures differ only in the number of carbon atoms in the tails. Single‐crystal X‐ray structures were resolved for these OPV synthons and the existence of long‐range multiple‐arm CH/π interactions was revealed in the crystal lattices. Alignment of these π‐conjugated OPVs in the solid state was found to be crucial in producing either right‐handed herringbone packing in the crystal or left‐handed helices in the liquid‐crystalline mesophase. Pitch‐ and roll‐angle displacements of OPV chromophores were determined to trace the effect of the molecular inclination on the ordering of hierarchical structures. Furthermore, circular dichroism studies on the OPVs were carried out in the aligned helical structures to prove the existence of molecular self‐assembly. Thus, the present strategy opens up new approaches in supramolecular chemistry based on weak CH/π hydrogen bonding, more specifically in π‐conjugated materials.  相似文献   

12.
The structure of 4‐methoxy‐1‐naphthol, C11H10O2, (I), contains an intermolecular O—H...O hydrogen bond which links the molecules into a simple C(2) chain running parallel to the shortest crystallographic b axis. This chain is reinforced by intermolecular π–π stacking interactions. Comparisons are drawn between the crystal structure of (I) and those of several of its simple analogues, including 1‐naphthol and some monosubstituted derivatives, and that of its isomer 7‐methoxy‐2‐naphthol. This comparison shows a close similarity in the packing of the molecules of its simple analogues that form π‐stacks along the shortest crystallographic axes. A substantial spatial overlap is observed between adjacent molecules in such stacks. In this group of monosubstituted naphthols, the overlap depends mainly on the position of the substituents carried by the naphthalene moiety, and the extent of the overlap depends on the substituent type. By contrast with (I), in the crystal structure of the isomeric 7‐methoxy‐2‐naphthol there are no O—H...O hydrogen bonds or π–π stacking interactions, and sheets are formed by O—H...π and C—H...π interactions.  相似文献   

13.
Molecular packing analyses were carried out on 15 crystal data sets of chloro‐substituted Schiff bases, including that of the title compound, C15H15ClN2. C—H⋯π and π–π interactions play a major role in the molecular self‐assembly in the crystal. The former interactions favor mol­ecules assembling into a screw, with a non‐centrosymmetric crystal structure. When the molecular dipole is small, π–π interactions favor a parallel, but not usually antiparallel, mode of packing. Weak C—H⋯X hydrogen bonds (X = Cl or Br) and XX interactions seem to be a secondary driving force in packing. The title mol­ecule takes the trans form and the two benzene rings are twisted around the central linkage in opposite directions. In the crystal structure, mol­ecules interact through C—H⋯π and π–π interactions, forming a `dimer' and further forming double chains along [001]. The double chains are extended along [10] through C—H⋯Cl hydrogen bonds, forming double layers in (010). In the third direction, there are only ordinary, weaker, van der Waals interactions, which explains the crystal habit (i.e. thin plate).  相似文献   

14.
The title compound, C20H17N3, is a derivative of 1,3,5‐triaryl‐2‐pyrazoline and can act as an N,N′‐bidentate ligand. This molecule features strong fluorescence that can be explained by an extended pyridyl–C=N—N–phenyl system. The three‐dimensional structure is formed by means of an extended network of weak C—H...π hydrogen bonds supported by π–π interactions.  相似文献   

15.
A [2.2]paracyclophane‐based through‐space conjugated oligomer comprising three π‐electron systems was designed and synthesized. The arrangement of three π‐conjugated systems in an appropriate order according to the energy band gap resulted in efficient unidirectional photoexcited energy transfer by the Förster mechanism. The energy transfer efficiency and rate constants were estimated to be >0.999 and >1012 s?1, respectively. The key point for the efficient energy transfer is the orientation of the transition dipole moments. The time‐dependent density functional theory (TD‐DFT) studies revealed the transition dipole moments of each stacked π‐electron system; each dipole moment was located on the long axis of each stacked π‐electron system. This alignment of the dipole moments is favorable for fluorescence resonance energy transfer (FRET).  相似文献   

16.
The title compound, C12H16BrO2, is an interesting case of a simple organic molecule making use of five different types of intra‐ and intermolecular interactions (viz. conventional and nonconventional hydrogen bonds, and π–π, Br...Br and Br...O contacts), all of them relevant in the molecular and crystal structure geometry. The molecules are strictly planar, with an intramolecular O—H...O hydrogen bond, and associate into two‐dimensional structures parallel to (01) through two different types of halogen bonding. The planar structures, in turn, stack parallel to each other interlinked by C—H...π and π–π contacts. Also discussed are the relevant structural features leading to the rather low melting point of the compound.  相似文献   

17.
In the title compound, C24H20Br2N2O4S, the indole ring system is planar and the S atom has a distorted tetrahedral configuration. The sulfonyl‐bound phenyl ring is orthogonal to the indole ring system and the conformation of the phenyl­sulfonyl substituent with respect to the indole moiety is influenced by intramolecular C—H⃛O hydrogen bonds involving the two sulfonyl O atoms. The mean plane through the acetyl­amido group makes a dihedral angle of 57.0 (1)° with the phenyl ring of the benzyl moiety. In the crystal, glide‐related mol­ecules are linked together by N—H⃛O hydrogen bonds and C—H⃛π interactions to form molecular chains, which extend through the crystal. Inversion‐related chains are interlinked by C—H⃛π interactions to form molecular layers parallel to the bc plane. These layers are interconnected through π–π interactions involving the five‐ and six‐membered rings of the indole moiety.  相似文献   

18.
The intermolecular π‐hole···π‐electrons interactions between F2ZO (Z = C, Si, Ge) molecules and unsaturated hydrocarbons including acetylene, ethylene, 1,3‐butadiene and benzene were constructed to reveal the differences of tetrel bonds forming by carbon and heavier tetrel atoms. The ab initio computation in association with topological analysis of electron density, natural bond orbital, and energy decomposition analysis demonstrate that the strength of Si···π and Ge···π tetrel bonds is much stronger than that of C···π tetrel bonds. The Si···π and Ge···π tetrel bonds exhibit covalent or partially covalent interaction nature, while the weak C···π tetrel bonds display the hallmarks of noncovalent interaction, the electrostatic interaction is the primary influencing factor. The Si···π and Ge···π interactions are determined by both the σ‐ and π‐electron densities, while the C···π interactions are dominated mainly by the π‐electron densities. The π‐hole···π‐electrons tetrel bonds are dominated by electrostatic interaction, and polarization has a comparable contribution in the Si···π and Ge···π tetrel bonds.  相似文献   

19.
The title compound, C23H15Cl2NO3, crystallizes with two independent mol­ecules in the asymmetric unit. The chroman­one moiety consists of a benzene ring fused with a six‐membered heterocyclic ring which adopts a sofa conformation. The five‐membered spiro­isoxazoline ring is in an envelope conformation. The p‐chloro­phenyl rings bridged by the five‐membered ring are nearly perpendicular to each other. The chromanone moiety of one mol­ecule packs into the cavity formed by the p‐chloro­phenyl rings of a second mol­ecule through the formation of C—H?π interactions. The structure is stabilized by weak C—H?O, C—H?Cl and C—H?π interactions.  相似文献   

20.
Crystal structure analysis of the title compound, C13H12ClNO, reveals three crystallographically independent mol­ecules in the asymmetric unit. The main conformational difference between these mol­ecules is the orientation of the phenyl rings with respect to the pyrrole rings. The coplanar arrangement of the aldehyde groups attached to the pyrrole rings influences the pyrrole‐ring geometry. The C2—C3 and N1—C5 bonds are noticeably longer than the C4—C5 and N1—C2 bonds. Two independent mol­ecules of the title compound form dimers via intermolecular C—H⃛O hydrogen bonds [DA = 3.400 (3) Å and D—H⃛A = 157°]. The perpendicular orientation of the phenyl and pyrrole rings of one independent mol­ecule and its symmetry‐related mol­ecule allows C—H⃛π interactions, with an H⃛centroid distance of 2.85 Å and a C—H⃛π angle of 155°. The distances between the H atom and the pyrrole‐ring atoms indicate that the C—H bond points towards one of the bonds in the pyrrole ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号