首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive method for simultaneous analysis of 43 pharmaceutical compounds in sewage sludge and sediment samples was developed and validated. The target compounds were extracted using pressurized liquid extraction (PLE) and then purified and pre-concentrated by solid phase extraction (SPE) using a hydrophilic-lipophilic balanced polymer. PLE extraction was performed on temperature of 100 °C, with methanol/water mixture (1/2, v/v) as extraction solvent. The quantitative analysis was performed by liquid chromatography tandem mass spectrometry using a hybrid triple quadrupole-linear ion trap mass spectrometer (LC-QqLIT-MS). Data acquisition was carried out in selected reaction monitoring (SRM) mode, monitoring two SRM transitions to ensure an accurate identification of target compounds in the samples. Additional identification and confirmation of target compounds were performed using the Information Dependent Acquisition (IDA) function. The method was validated through the estimation of the linearity, sensitivity, repeatability, reproducibility and matrix effects. The internal standard approach was used for quantification because it efficiently corrected matrix effects. Despite the strong matrix interferences, the recoveries were generally higher of 50% in both matrixes and the detection and quantification limits were very low. Beside the very good sensitivity provided by LC-QqLIT-MS, an important characteristic of the method is that all the target compounds can be simultaneously extracted, treated and analysed. Hence, it can be used for routine analysis of pharmaceuticals providing large amount of data. The method was applied for the analysis of pharmaceuticals in river sediment and wastewater sludge from three treatment plants with different treatment properties (i.e. capacity, secondary treatment, quality of influent waters). The analysis showed a widespread occurrence of pharmaceuticals in the sludge matrices.  相似文献   

2.
In vitro metabolic stability experiments using microsomes or other liver preparations are important components in the discovery and lead-optimization stages of compound selection in the pharmaceutical industry. Currently, liquid chromatography-tandem mass spectrometric (LC-MS/MS) support of in vitro metabolic stability studies primarily involves the monitoring of disappearance of parent compounds, using selected reaction monitoring (SRM) on triple-quadrupole instruments. If moderate to high turnover is observed, separate metabolite identification experiments are then conducted to characterize the biotransformation products. In this paper, we present a novel method to simultaneously perform metabolite screening in addition to the quantitative stability measurements, both within the same chromatographic run. This is accomplished by combining SRM and SRM-triggered, information-dependent acquisition (IDA) of MS/MS spectra on a hybrid triple-quadrupole linear ion trap (QqQLIT) mass spectrometer. Microsomal stability experiments using model compounds, bufuralol, propranolol, imipramine, midazolam, verapamil and diclofenac, were used to demonstrate the applicability of our approach. This SRM + SRM-IDA approach generated metabolic stability results similar to those obtained by conventional SRM-only approach. In addition, MS/MS spectra from potential metabolites were obtained with the enhanced product ion (EPI) scan function of LIT during the same injection. These spectra were correlated to the spectra of parent compounds to confirm the postulated structures. The time-concentration profiles of identified metabolites were also estimated from the acquired data. This approach has been successfully used to support discovery programs.  相似文献   

3.
This paper describes the determination and quantitation of hexabromocyclododecane (HBCD) enantiomers by liquid chromatography-quadrupole linear ion trap mass spectrometry (LC-QqLIT-MS). The method is based on the use of a chiral chromatographic column Nucleodex beta-PM (200 mm x 4.0 mm, 5 microm), which allows a good separation between HBCD enantiomers [(+/-)alpha, (+/-)beta and (+/-)gamma] in less than 15 min and the detection is performed by a Q-Trap instrument. Linearity was checked between 0.05 and 25 injected ng. Limits of detection (LODs) were in the range of 0.3-1.5 pg, limits of quantification (LOQs) were between 1 and 6 pg, and both values are lower than those published in the literature applying LC-MS-MS methods. The method was applied to sediment samples collected along the Cinca River, a tributary of the Ebro River (northeast of Spain). Samples were extracted and purified following a pressurized liquid extraction method. LODs of the method were between 0.12 and 5.61 ng/g and LOQs, from 0.38 to 1.87 ng/g. Total HBCD levels in these sediments ranged from not detected to 2660 ng/g dry weight. Enantiomeric fractions (EFs) were calculated and compared with EF obtained from standard injections. It is important to note that calculated EFs were corrected using (2)H(18)-labeled HBCD standards, in order to compensate matrix effect. EFs obtained in sediment samples suggested a higher presence of (+)alpha-HBCD and (+)gamma-HBCD in technical mixture, this suggests that it is not a racemic mixture.  相似文献   

4.
5.
The determination of tetra- to octachlorodibenzo-p-dioxins and tetra- to octachlorodibenzofurans (PCCD/Fs) by high-resolution gas chromatography/tandem mass spectrometry (HRGC/MS/MS) and high-resolution gas chromatography/triple mass spectrometry (HRGC/MS(3)) in a quadrupole ion trap, equipped with an external ion source, is presented. MS/MS involves a typical four-step process, namely ionization, parent ion isolation, collision-induced dissociation (CID) and mass analysis of the daughter ions. For the MS(3) experiment, the MS/MS scan function is used with the addition of selected daughter ion isolation, their CID and the mass analysis of second-generation product ions called 'grand-daughter ions.' For both methods, the energies necessary for the CID of the 17 PCDD/Fs were determined and optimized using multiple scan functions with different CID amplitudes. The CID efficiency, defined as the signal ratio of fragment ions detected from the major dissociation channels to molecular ions isolated, was 1.15-2.40 V for parent ion dissociation (MS/MS) and 1.05-1.50 V for daughter ion dissociation (MS(3)) and for all the chloro congeners. The same sensitivity (1 pg microl(-1)) can be reached with both the MS/MS and MS(3) methods and linear responses were obtained between 1 and 100 pg microl(-1) injected.  相似文献   

6.
液相色谱-电喷雾离子阱质谱联用分析河豚毒素   总被引:5,自引:0,他引:5  
应用C18反相色谱柱和HILIC亲水作用色谱柱,建立了河豚毒素(TTX)的液相色谱-电喷雾离子阱质谱联用分析方法。应用反相色谱法,在选择离子监测(SIM)模式下,对TTX的分析具有良好的线性响应(r=0.9992),方法检出限(S/N=3)为120pg,相对标准偏差(RSD)低于10%;应用亲水色谱法,在SIM和选择反应监测(SRM)模式下同样具有良好的线性响应(r=0.9996和r=0.9998),检出限(S/N=3)分别为15pg和3.75pg,在SIM模式下RSD低于10%,在SRM模式下RSD处于10%~20%之间。亲水作用色谱柱大大提高了方法的灵敏度,由于SIM模式具有较高的精密度,建议应用HILIC色谱柱的SIM模式定量分析TTX。  相似文献   

7.
A hybrid linear ion trap/triple quadrupole mass spectrometer was used to demonstrate the value of collecting full scan qualitative data during quantitative analysis of target compounds. We present examples of the additional information that can be obtained from plasma samples analyzed primarily for target compound concentrations. This information includes detection of circulating metabolites, dosing vehicle, interfering matrix components, and potential interfering drug conjugates. Additionally, the quantitative results from selected reaction monitoring (SRM) analysis and from combined full scan and SRM analysis (SRM/EMS) were compared. The quantitative data in both scan modes are acceptable in terms of sensitivity, accuracy and precision. One can conclude from this work that the hybrid linear ion trap/triple quadrupole mass analyzer can provide in a single analysis both useful qualitative data, and accurate and precise quantitative data from the samples routinely prepared and analyzed for target drug concentrations.  相似文献   

8.
An ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method for fast‐throughput analysis of eight anabolic and androgenic steroids (AAS) in equine plasma is reported. Analytes were recovered by liquid‐liquid extraction using methyl tert‐butyl ether, separated on a 1.9 µm C18 reversed‐phase column, and analyzed in positive electrospray ionization mode on a triple quadrupole mass spectrometer with selected reaction monitoring (SRM) and full product ion scans. Two SRM ion transitions were monitored for each AAS during screening to obtain highly selective screening results. Full product ion spectra of excellent quality for AAS, at 100 pg/0.5 mL in plasma, devoid of interfering spectra from impurities in plasma, were obtained. To our knowledge, this is the first report on the acquisition of full product ion spectra at such a low analyte concentration and plasma volume using a triple quadrupole instrument. In addition to product ion intensity ratios obtained from three SRM scans for identifying AAS in equine plasma, full product ion spectra were used as supporting evidence for confirmation. For quantification, deuterium‐labeled testosterone and stanozolol were used as internal standards (ISs). The limits of detection, quantification and confirmation were 6.25–12.5 pg/0.5 mL, 25 pg/0.5 mL and 50–100 pg/0.5 mL, respectively. There was no significant matrix effect on the analysis of all eight AAS. Intra‐day precision and accuracy were 2–15% and 91–107%, respectively. Inter‐day precision and accuracy were 1–21% and 94–110%, respectively. Total analysis time was 5 min. To date, the method has been successfully used in the analysis of >12 000 samples for AAS in plasma samples from racehorses competing in the State of Pennsylvania. The method is fast, selective, reproducible, and reliable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Triple quadrupole mass spectrometers are generally considered the instrument of choice for quantitative analysis. However, for the analysis of large peptides we have encountered some cases where, as the data presented here would indicate, ion trap mass spectrometers may be a good alternative. In general, specificity and sensitivity in bioanalytical liquid chromatography/mass spectrometry (LC/MS) assays are achieved via tandem MS (MS/MS) utilizing collision-induced dissociation (CID) while monitoring unique precursor to product ion transitions (i.e. selected reaction monitoring, SRM). Due to the difference in CID processes, triple quadrupoles and ion traps often generate significantly different fragmentation spectra of product ion species and intensities. The large peptidic analytes investigated here generated fewer fragments with higher relative abundance on the ion trap as compared to those generated on the triple quadrupole, resulting in lower limits of detection on the ion trap.  相似文献   

10.
The LC-MS/MS analysis of a group of 14 organic pollutants in wastewater – including pharmaceuticals (analgesics/anti-inflammatories, lipid regulators and diuretics), pesticides (diuron) and disinfectants (chlorophene) – has been carried out using a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqLIT). In order to take advantage of the capabilities of the QqLIT system, two methods have been developed and compared, based on the application of different operation modes. One of them uses selected reaction monitoring (SRM), which is the standard mode for quantitative LC-MS/MS analysis. The other is based on the use of an information dependent acquisition scan function (IDA), which allows the combination of a SRM acting as the survey scan and an enhanced product ion scan (EPI) as dependent scan within the same analysis. Performance of both methods was compared, especially in terms of their limits of detection and identification capability. The advantages and limitations of both techniques are discussed. Finally, the two methodologies developed were applied to real samples for evaluation of effluent wastewater in a treatment plant on the south-eastern Mediterranean coast of Spain. The presence of most of the target compounds was detected at mean concentrations ranging from 50 ng/L (mefenamic acid) to 3373 ng/L (hydrochlorothiazide).  相似文献   

11.
The potential for using testosterone and nandrolone esters in racehorses to boost the biological concentrations of these steroids and enhance athletic performance is very compelling and should be seriously considered in formulating regulatory policies for doping control. In order to regulate the use of these esters in racehorses, a sensitive and validated method is needed. In this paper, we report such a method for simultaneous separation, screening, quantification and confirmation of 16 testosterone and nandrolone esters in equine plasma by ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Analytes were extracted from equine plasma by liquid-liquid extraction using a mixture of methyl tert-butyl ether and ethyl acetate (50:50, v/v) and separated on a sub-2 micron C(18) column. Detection of analytes was achieved on a triple-quadrupole mass spectrometer by positive electrospray ionization mode with selected reaction monitoring (SRM). Mobile phase comprised 2 mM ammonium formate and methanol. Deuterium-labeled testosterone enanthate and testosterone undecanoate were used as dual-internal standards for quantification. Limits of detection (LOD) and quantification (LOQ) were 25-100 pg/mL and 100-200 pg/mL, respectively. The linear dynamic range of quantification was 100-10,000 pg/mL. For confirmation of the presence of these analytes in equine plasma, matching of the retention time with mass spectrometric ion ratios from MS/MS product ions was used. The limit of confirmation (LOC) was 100-500 pg/mL. The method is sensitive, robust, selective and reliably reproducible.  相似文献   

12.
Recently, linear ion traps (LITs) have been combined with quadrupole (Q), time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). LITs can be used either as ion accumulation devices or as commercially available, stand-alone mass spectrometers with MSn capabilities. The combination of triple quadrupole MS with LIT technology in the form of an instrument of configuration QqLIT, using axial ejection, is particularly interesting, because this instrument retains the classical triple quadrupole scan functions such as selected reaction monitoring (SRM), product ion (PI), neutral loss (NL) and precursor ion (PC) while also providing access to sensitive ion trap experiments. For small molecules, quantitative and qualitative analysis can be performed using the same instrument. In addition, for peptide analysis, the enhanced multiply charged (EMC) scan allows an increase in selectivity, while the time-delayed fragmentation (TDF) scan provides additional structural information. Various methods of operating the hybrid instrument are described for the case of the commercial Q TRAP (AB/MDS Sciex) and applications to drug metabolism analysis, quantitative confirmatory analysis, peptides analysis and automated nanoelectrospray (ESI-chip-MS) analysis are discussed.  相似文献   

13.
P W Crozier  J B Plomley  L Matchuk 《The Analyst》2001,126(11):1974-1979
Ontario Provincial Water Quality Objectives for polycyclic aromatic hydrocarbons (PAHs) in surface waters require low parts per trillion (ng L(-1))/high parts per quadrillion (pg L(-1)) detection limits. To meet these monitoring requirements, a solid phase extraction-gas chromatography-ion trap mass spectrometry (SPE-GC-ITMS) method was developed. Seventeen priority PAHs commonly monitored in surface and drinking waters were examined using an external ionization ion trap mass spectrometer operated in selected ion monitoring (SIM) mode. Under 70 eV electron ionization (El) conditions, both the quantitative [M]+* ion and confirmatory [M - 2H]+* ion were formed in classical abundance ratios. Each of these ion species was isolated in the ion trap using a specific scan function. However, to overcome poor levels of confirmatory ion abundance which otherwise restrict PAH method detection limits (MDLs), the abundance of [M - 2H]+* ions was augmented during isolation by causing the dissociation of [M]+* with the broad-band waveform used for high mass ion ejection. Augmenting the [M - 2H]+* signal intensity facilitated the achievement of MDLs of approximately 1 ng L(-1). PAHs in surface water samples that were not detected by current Ontario Ministry of the Environment high-performance liquid chromatography (HPLC)-fluorescence and GC-single-stage quadrupole mass spectrometry methods were detected and quantified using the ion trap mass spectrometry SIM method. The data produced by all three methods on natural water samples fortified at sub-parts per billion (ppb) levels were comparable. When applied to Standards Council of Canada/Canadian Association for Environmental Analytical Laboratories (SCC/CAEAL, www.CAEAL.ca) accreditation audit samples, the SPE-GC-ITMS method results met all performance evaluation criteria.  相似文献   

14.
Eleven phenothiazine derivatives with heavy side-chains were found to be extractable from human whole blood and urine samples by solid-phase microextraction (SPME) with a polyacrylate-coated fiber. The fiber was then injected into the desorption chamber of an SPME-liquid chromatography (LC) interface for LC/tandem mass spectrometry (MS/MS) with positive ion electrospray (ES) ionization. All compounds formed base peaks due to [M + 1](+) ions by LC/ES-MS/MS. By use of LC/ES-MS/MS, the product ions produced from each [M + 1](+) ion showed base peaks due to side-chain liberation. Selected reaction monitoring (SRM) and selected ion monitoring (SIM) were compared for the detection of the 11 phenothiazine derivatives from human whole blood and urine. SRM showed much higher sensitivity than SIM for both types of sample. Therefore, a detailed procedure for the detection of drugs by SRM with SPME-LC/MS/MS was established and carefully validated. The extraction efficiencies of the 11 phenothiazine derivatives spiked into whole blood and urine were 0. 0002-0.12 and 2.6-39.8%, respectively. The regression equations for the 11 phenothiazine derivatives showed excellent linearity with detection limits of 0.2-200 ng ml(-1) for whole blood and 4-22 pg ml(-1) for urine. The intra- and inter-day precisions for whole blood and urine samples were not greater than 15.1%. The data obtained after oral administration of perazine or flupentixol to a male subject are presented.  相似文献   

15.
This paper describes a new strategy that utilizes the fast trap mode scan of the hybrid triple quadrupole linear ion trap (QqQ(LIT)) for the identification of drug metabolites. The strategy uses information-dependent acquisition (IDA) where the enhanced mass scan (EMS), the trap mode full scan, was used as the survey scan to trigger multiple dependent enhanced product ion scans (EPI), the trap mode product ion scans. The single data file collected with this approach not only includes full scan data (the survey), but also product ion spectra rich in structural information. By extracting characteristic product ions from the dependent EPI chromatograms, we can provide nearly complete information for in vitro metabolites that otherwise would have to be obtained by multiple precursor ion scan (prec) and constant neutral loss (NL) analysis. This approach effectively overcomes the disadvantages of traditional prec and NL scans, namely the slow quadrupole scan speed, and possible mass shift. Using nefazodone (NEF) as the model compound, we demonstrated the effectiveness of this strategy by identifying 22 phase I metabolites in a single liquid chromatography/tandem mass spectrometry (LC/MS/MS) run. In addition to the metabolites reported previously in the literature, seven new metabolites were identified and their chemical structures are proposed. The oxidative dechlorination biotransformation was also discovered which was not reported in previous literature for NEF. The strategy was further evaluated and worked well for the fast discovery setting when a ballistic gradient elution was used, as well as for a simulated in vivo setting when the incubated sample (phase I metabolites) was spiked to control human plasma extract and control human urine.  相似文献   

16.
The quantitative capabilities of a linear ion trap high‐resolution mass spectrometer (LTQ‐Orbitrap™) were investigated using full scan mode bracketing the m/z range of the ions of interest and utilizing a mass resolution (mass/FWHM) of 15000. Extracted ion chromatograms using a mass window of ±5–10 mmu centering on the theoretical m/z of each analyte were generated and used for quantitation. The quantitative performance of the LTQ‐Orbitrap™ was compared with that of a triple quadrupole (API 4000) operating using selected reaction monitoring (SRM) detection. Comparable assay precision, accuracy, linearity and sensitivity were observed for both approaches. The concentrations of actual study samples from 15 Merck drug candidates reported by the two methods were statistically equivalent. Unlike SRM being a tandem mass spectrometric (MS/MS)‐based detection method, a high resolution mass spectrometer operated in full scan does not need MS/MS optimization. This approach not only provides quantitative results for compounds of interest, but also will afford data on other analytes present in the sample. An example of the identification of a major circulating metabolite for a preclinical development study is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Bioanalytical support of plasma pharmacokinetic (PK) studies for drug discovery programs primarily involves the quantitative analysis of dosed compounds using liquid chromatography/atmospheric pressure ionization tandem mass spectrometry (LC/MS/MS) operated in selected reaction monitoring (SRM) mode. However, there is a growing need for information on the metabolism of new chemical entities (NCEs), in addition to the time-concentration profiles from these studies. In this paper, we present a novel approach to not only quantify parent drugs with SRM, but also simultaneously screen for metabolites using a hybrid triple quadrupole/linear ion trap (QqQ(LIT)) instrument. This was achieved by incorporating both the conventional SRM-only acquisition of parent compounds and the SRM-triggered information-dependent acquisition (IDA) of potential metabolites within the same scan cycle during the same LC/MS/MS run. Two test compounds were used to demonstrate the applicability of this approach. Plasma samples from PK studies were processed by simple protein precipitation and the supernatant was diluted with water before injection. The fast scanning capability of the linear ion trap allowed for the information-dependent acquisition of metabolite MS/MS spectra (<1 s/scan), in addition to the collection of adequate data points for SRM-only channels. The MS/MS spectra obtained from potential metabolites in post-dose samples correlated well with the spectra of the parent compounds studied, therefore providing additional confirmatory structure information without the need for repetitive analyses. Relative quantitative time-concentration profiles of identified metabolites were also obtained. Furthermore, this articulated SRM+SRM-IDA approach generated equivalent quantitative results for parent compounds to those obtained by conventional SRM-only analysis. This approach has been successfully used to support discovery PK screening programs.  相似文献   

18.
Based on reversed-phase high-performance liquid chromatography (RP-HPLC) and atmospheric pressure chemical ionization (APCI) mass spectrometry, a HPLC-MS method was developed to permit the rapid qualitative and quantitative analysis of azadirachtin and related tetranortriterpenoids from seeds and tissue cultures of Neem (Azadirachta indica). APCI+ standard scanning mass spectra of the major Neem triterpenoids were recorded and utilized to select suitable ions for selected ion monitoring (SIM). Transitions for selective reaction monitoring (SRM) were based on MS-MS experiments. Using SIM, major Neem triterpenoids were detected in callus culture material and seed kernels of A. indica. The limit of detection for azadirachtin in extract samples (approximately 1 ng ml(-1) or 10 pg in SIM mode) was determined to be (with respect to injected absolute amounts) approximately 1000-times lower than values quoted in the literature for existing HPLC methods (approximately 200 ng ml(-1) or 10 ng). In addition to high sensitivity, the HPLC-MS method is able to tolerate minimal sample preparation and purification, dramatically reducing total analysis time.  相似文献   

19.
祝伟霞  孙转莲  袁萍  杨冀州  刘亚风  孙武勇 《色谱》2014,32(12):1333-1339
建立了高效液相色谱-三重四极杆线性离子阱质谱测定火锅料中吗啡、可待因、蒂巴因、罂粟碱、那可丁等5种生物碱残留的确证方法。样品采用稀盐酸加热提取,正己烷除脂,阳离子混合机理固相萃取柱净化,5%氨化乙酸乙酯-甲醇洗脱,PAK ST色谱柱分离,5 mmol/L乙酸铵甲醇溶液-10 mmol/L乙酸铵水溶液(pH 3.6)作为流动相洗脱,电喷雾正离子模式下多反应监测同步增强子离子在线全扫描(EPI)。在该实验条件下,5种生物碱的LOD在0.05~0.5 μg/kg之间,增强型子离子全扫描水平限和LOQ在0.2~2 μg/kg之间,方法回收率为64.2%~110.6%, RSD为4.2%~12.5%。阳性样品的定性确证需采用其子离子全扫描质谱图与标准图库中子离子质谱图检索匹配。经测定多种火锅料,表明本方法操作简单、测定结果准确,可用于火锅料中5种生物碱残留的阳性结果确证分析。  相似文献   

20.
The performance of three different types of mass spectrometers (MS) coupled to high performance liquid chromatography (HPLC) was compared for trace analysis of perfluoroalkylated substances (PFAS) and fluorotelomer alcohols (FTOHs). Ion trap MS in the full scan and product ion MS2 mode, time-of-flight (TOF) high resolution MS and quadrupole MS in the selected ion mode as well as triple quadrupole tandem MS were tested. Electrospray ionisation in the negative ion mode [ESI-] was best suited for all instruments and compounds. PFAS could only be separated by a buffered mobile phase, but the presence of buffer suppressed the ionisation of FTOHs. Therefore, two independent chromatographic methods were developed for the two compound classes. Mass spectra and product ion spectra obtained by in-source and collision induced dissociation fragmentation are discussed including ion adduct formation. Product ion yields of PFAS were only in the range of 0.3 to 12%, independent from the applied MS instrument. Ion trap MS2 gave product ion yields of 20 to 62% for FTOHs, whereas only 4.1 to 5.8% were obtained by triple quadrupole tandem MS. Ion trap MS was best suited for qualitative analysis and structure elucidation of branched isomeric structures of PFAS. Providing typical detection limits of 5 ng injected in MS2 mode, it was not sensitive enough for selective trace amount quantification. TOF high resolution MS was the only technique combining high selectivity and excellent sensitivity for PFAS analysis (detection limits of 2 to 10 pg), but lacked the possibility of MS-MS. Triple quadrupole tandem MS was the method of choice for quantification of FTOHs with detection limits in the low pg range. It is also well suited for the determination of PFAS, though its detection limits of 10 to 100 pg in tandem MS mode are about one order of magnitude higher than for TOF MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号