首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We study the collection of finite elements \(\Phi _{1}\big ({\mathcal {U}}(E,F)\big )\) in the vector lattice \({\mathcal {U}}(E,F)\) of orthogonally additive, order bounded (called abstract Uryson) operators between two vector lattices E and F, where F is Dedekind complete. In particular, for an atomic vector lattice E it is proved that for a finite element in \(\varphi \in {\mathcal {U}}(E,{\mathbb {R}})\) there is only a finite set of mutually disjoint atoms, where \(\varphi \) does not vanish and, for an atomless vector lattice the zero-vector is the only finite element in the band of \(\sigma \)-laterally continuous abstract Uryson functionals. We also describe the ideal \(\Phi _{1}\big ({\mathcal {U}}({\mathbb {R}}^n,{\mathbb {R}}^m)\big )\) for \(n,m\in {\mathbb {N}}\) and consider rank one operators to be finite elements in \({\mathcal {U}}(E,F)\).  相似文献   

2.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

3.
We prove that every homomorphism \(\mathcal{O}^{E}_{\zeta}\rightarrow\mathcal{O}^{F}_{\zeta}\), with E and F Banach spaces and ζ∈? m , is induced by a \(\mathop{\mathrm{Hom}}(E,F)\)-valued holomorphic germ, provided that 1≤m<∞. A similar structure theorem is obtained for the homomorphisms of type \(\mathcal{O}^{E}_{\zeta}\rightarrow\mathcal{S}_{\zeta}\), where \(\mathcal{S}_{\zeta}\) is a stalk of a coherent sheaf of positive depth. We later extend these results to sheaf homomorphisms, obtaining a condition on coherent sheaves which guarantees the sheaf to be equipped with a unique analytic structure in the sense of Lempert–Patyi.  相似文献   

4.
Here we present an alternative proof using Bures distance that the generator L of a norm continuous completely positive semigroup acting on a \(C^*\)-algebra \({\mathcal {B}}\subset \mathcal B(H)\) has the form \( L(b) = \Psi (b) + k^*b+bk\), \(b\in {\mathcal {B}}\) for some completely positive map \(\Psi :{\mathcal {B}}\rightarrow {\mathcal {B}}(H)\) and \(k\in {\mathcal {B}}(H)\).  相似文献   

5.
We show that symmetric block designs \({\mathcal {D}}=({\mathcal {P}},{\mathcal {B}})\) can be embedded in a suitable commutative group \({\mathfrak {G}}_{\mathcal {D}}\) in such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this property are the point-line designs of \({\mathrm {PG}}(d,2)\) and \({\mathrm {AG}}(d,3)\). In both cases, the blocks can be characterized as the only k-subsets of \(\mathcal {P}\) whose elements sum to zero. It follows that the group of automorphisms of any such design \(\mathcal {D}\) is the group of automorphisms of \({\mathfrak {G}}_\mathcal {D}\) that leave \(\mathcal {P}\) invariant. In some special cases, the group \({\mathfrak {G}}_\mathcal {D}\) can be determined uniquely by the parameters of \(\mathcal {D}\). For instance, if \(\mathcal {D}\) is a 2-\((v,k,\lambda )\) symmetric design of prime order p not dividing k, then \({\mathfrak {G}}_\mathcal {D}\) is (essentially) isomorphic to \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\), and the embedding of the design in the group can be described explicitly. Moreover, in this case, the blocks of \(\mathcal {B}\) can be characterized also as the v intersections of \(\mathcal {P}\) with v suitable hyperplanes of \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\).  相似文献   

6.
We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.  相似文献   

7.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

8.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

9.
Let A and B be two points of \(\mathop {\mathrm{PG}}(d,q^n)\) and let \(\Phi \) be a collineation between the stars of lines with vertices A and B, that does not map the line AB into itself. In this paper we prove that if \(d=2\) or \(d\ge 3\) and the lines \(\Phi ^{-1}(AB), AB, \Phi (AB) \) are not in a common plane, then the set \(\mathcal{C}\) of points of intersection of corresponding lines under \(\Phi \) is the union of \(q-1\) scattered \({\mathbb {F}}_{q}\)-linear sets of rank n together with \(\{A,B\}\). As an application we will construct, starting from the set \(\mathcal{C}\), infinite families of non-linear \((d+1, n, q;d-1)\)-MRD codes, \(d\le n-1\), generalizing those recently constructed in Cossidente et al. (Des Codes Cryptogr 79:597–609, 2016) and Durante and Siciliano (Electron J Comb, 2017).  相似文献   

10.
Let \(\varGamma = (X,R)\) be a connected graph. Then \(\varGamma \) is said to be a completely regular clique graph of parameters (sc) with \(s\ge 1\) and \(c\ge 1\), if there is a collection \({\mathcal {C}}\) of completely regular cliques of size \(s+1\) such that every edge is contained in exactly c members of \({\mathcal {C}}\). In the previous paper (Suzuki in J Algebr Combin 40:233–244, 2014), we showed, among other things, that a completely regular clique graph is distance-regular if and only if it is a bipartite half of a certain distance-semiregular graph. In this paper, we show that a completely regular clique graph with respect to \({\mathcal {C}}\) is distance-regular if and only if every \({\mathcal {T}}(C)\)-module of endpoint zero is thin for all \(C\in {\mathcal {C}}\). We also discuss the relation between a \({\mathcal {T}}(C)\)-module of endpoint 0 and a \({\mathcal {T}}(x)\)-module of endpoint 1 and study examples of completely regular clique graphs.  相似文献   

11.
Let G be the group of projectivities stabilizing a unital \(\mathcal{U}\) in \(\mathop{\mathrm{PG}}(2,q^{2})\) and let A,B be two distinct points of \(\mathcal{U}\). In this paper we prove that, if G has an elation group of order q with center A and a group of projectivities stabilizing both A and B of order a divisor of q?1 greater than \(2(\sqrt{q}-1)\), then \(\mathcal{U}\) is an ovoidal Buekenhout–Metz unital. From this result two group theoretic characterizations of orthogonal Buekenhout–Metz unitals are given.  相似文献   

12.
Let \(\mathcal Lf(x)=-\Delta f (x)+V(x)f(x)\), V?≥?0, \(V\in L^1_{loc}(\mathbb R^d)\), be a non-negative self-adjoint Schrödinger operator on \(\mathbb R^d\). We say that an L 1-function f is an element of the Hardy space \(H^1_{\mathcal L}\) if the maximal function
$ \mathcal M_{\mathcal L} f(x)=\sup\limits_{t>0}|e^{-t\mathcal L} f(x)| $
belongs to \(L^1(\mathbb R^d)\). We prove that under certain assumptions on V the space \(H^1_{\mathcal L}\) is also characterized by the Riesz transforms \(R_j=\frac{\partial}{\partial x_j}\mathcal L^{-1\slash 2}\), j?=?1,...,d, associated with \(\mathcal L\). As an example of such a potential V one can take any V?≥?0, \(V\in L^1_{loc}\), in one dimension.
  相似文献   

13.
Let \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) be an \(\ell ^1\)-Munn algebra over an arbitrary unital Banach algebra \({\mathcal {A}}\). We characterize homomorphisms from \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) into an arbitrary Banach algebra \({\mathcal {B}}\) in terms of homomorphisms from \({\mathcal {A}}\) into \({\mathcal {B}}\). Then we discuss homomorphisms from arbitrary Banach algebras into \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \). Existence and uniqueness of homomorphisms under certain conditions are also discussed. We apply these results to the concrete case of \(\ell ^1(S)\) where S is a Rees matrix semigroup, to identify characters of \(\ell ^1(S)\) in both cases where S is with or without zero. As a consequence if the sandwich matrix of S has a zero entry, then \(\ell ^1(S)\) is character amenable.  相似文献   

14.
Let X be an algebraic curve over \({\mathbb {Q}}\) and \({t\in {\mathbb {Q}}(X)}\) a non-constant rational function such that \({{\mathbb {Q}}(X)\ne {\mathbb {Q}}(t)}\). For every \({ n \in {\mathbb {Z}}}\) pick \({P_ n \in X(\bar{{\mathbb {Q}}})}\) such that \({t(P_n)=n}\). We conjecture that, for large N, among the number fields \({\mathbb {Q}}(P_1), \ldots , {\mathbb {Q}}(P_N)\) there are at least cN distinct. We prove this conjecture in the special case when \(\bar{{\mathbb {Q}}}(X)/\bar{{\mathbb {Q}}}(t)\) is an abelian field extension and the critical values of t are all rational. This implies, in particular, that our conjecture follows from a more famous conjecture of Schinzel.  相似文献   

15.
We will study commuting properties of the defect functor \(\text {Def}_{\beta }=\text {Coker}\text {Hom}_{\mathcal {C}}(\beta ,-)\) associate to a homomorphism ß in a finitely presented category. As an application, we characterize objects M such that \(\text {Ext}^{1}_{\mathcal {C}}(M,-)\) commutes with direct unions (i.e. direct limits of monomorphisms), assuming that \(\mathcal {C}\) has a generator which is a direct sum of finitely presented projective objects.  相似文献   

16.
For the natural two-parameter filtration \(\left( {\mathcal {F}_\lambda }: {\lambda \in P}\right) \) on the boundary of a triangle building, we define a maximal function and a square function and show their boundedness on \(L^p(\Omega _0)\) for \(p \in (1, \infty )\). At the end, we consider \(L^p(\Omega _0)\) boundedness of martingale transforms. If the building is of \({\text {GL}}(3, \mathbb {Q}_p)\), then \(\Omega _0\) can be identified with p-adic Heisenberg group.  相似文献   

17.
Let \(\pi :{\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\rightarrow {\mathbb {P}}^{n-1}\) be a projective bundle over \({\mathbb {P}}^{n-1}\) with \(1\le k \le n-1\). We denote \({\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\) by \(N_{k}^{n}\) and endow it with the U(n)-invariant gradient shrinking Kähler Ricci soliton structure constructed by Cao (Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, 1996) and Koiso (Recent topics in differential and analytic geometry. Advanced studies in pure mathematics, Boston, 1990). In this paper, we show that lens space \(L(k\, ;1)(r)\) with radius r embedded in \(N_{k}^{n}\) is a self-similar solution. We also prove that there exists a pair of critical radii \(r_{1}<r_{2}\), which satisfies the following. The lens space \(L(k\, ;1)(r)\) is a self-shrinker if \(r<r_{2}\) and self-expander if \(r_{2}<r\), and the Ricci-mean curvature flow emanating from \(L(k\, ;1)(r)\) collapses to the 0-section of \(\pi \) if \(r<r_{1}\) and to the \(\infty \)-section of \(\pi \) if \(r_{1}<r\). This paper gives explicit examples of Ricci-mean curvature flows.  相似文献   

18.
Fix sets X and Y, and write \(\mathcal P\mathcal T_{XY}\) for the set of all partial functions \(X\rightarrow Y\). Fix a partial function \({a:Y\rightarrow X}\), and define the operation \(\star _a\) on \(\mathcal P\mathcal T_{XY}\) by \(f\star _ag=fag\) for \(f,g\in \mathcal P\mathcal T_{XY}\). The sandwich semigroup \((\mathcal P\mathcal T_{XY},\star _a)\) is denoted \(\mathcal P\mathcal T_{XY}^a\). We apply general results from Part I to thoroughly describe the structural and combinatorial properties of \(\mathcal P\mathcal T_{XY}^a\), as well as its regular and idempotent-generated subsemigroups, \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). After describing regularity, stability and Green’s relations and preorders, we exhibit \({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) as a pullback product of certain regular subsemigroups of the (non-sandwich) partial transformation semigroups \(\mathcal P\mathcal T_X\) and \(\mathcal P\mathcal T_Y\), and as a kind of “inflation” of \(\mathcal P\mathcal T_A\), where A is the image of the sandwich element a. We also calculate the rank (minimal size of a generating set) and, where appropriate, the idempotent rank (minimal size of an idempotent generating set) of \(\mathcal P\mathcal T_{XY}^a\)\({\text {Reg}}(\mathcal P\mathcal T_{XY}^a)\) and \(\mathbb E(\mathcal P\mathcal T_{XY}^a)\). The same program is also carried out for sandwich semigroups of totally defined functions and for injective partial functions. Several corollaries are obtained for various (non-sandwich) semigroups of (partial) transformations with restricted image, domain and/or kernel.  相似文献   

19.
We extend the range of N to negative values in the (KN)-convexity (in the sense of Erbar–Kuwada–Sturm), the weighted Ricci curvature \(\mathop {\mathrm {Ric}}\nolimits _N\) and the curvature-dimension condition \(\mathop {\mathrm {CD}}\nolimits (K,N)\). We generalize a number of results in the case of \(N>0\) to this setting, including Bochner’s inequality, the Brunn–Minkowski inequality and the equivalence between \(\mathop {\mathrm {Ric}}\nolimits _N \ge K\) and \(\mathop {\mathrm {CD}}\nolimits (K,N)\). We also show an expansion bound for gradient flows of Lipschitz (KN)-convex functions.  相似文献   

20.
We develop structural insights into the Littlewood–Richardson graph, whose number of vertices equals the Littlewood–Richardson coefficient \(c_{\lambda ,\mu }^{\nu }\) for given partitions \(\lambda \), \(\mu \), and \(\nu \). This graph was first introduced in Bürgisser and Ikenmeyer (SIAM J Discrete Math 27(4):1639–1681, 2013), where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood–Richardson coefficient: We design an algorithm for the exact computation of \(c_{\lambda ,\mu }^{\nu }\) with running time \(\mathcal {O}\big ((c_{\lambda ,\mu }^{\nu })^2 \cdot {\textsf {poly}}(n)\big )\), where \(\lambda \), \(\mu \), and \(\nu \) are partitions of length at most n. Moreover, we introduce an algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge t\) whose running time is \(\mathcal {O}\big (t^2 \cdot {\textsf {poly}}(n)\big )\). Even the existence of a polynomial-time algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge 2\) is a nontrivial new result on its own. Our insights also lead to the proof of a conjecture by King et al. (Symmetry in physics. American Mathematical Society, Providence, 2004), stating that \(c_{\lambda ,\mu }^{\nu }=2\) implies \(c_{M\lambda ,M\mu }^{M\nu } = M+1\) for all \(M \in \mathbb {N}\). Here, the stretching of partitions is defined componentwise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号