首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen YL  Mao JG 《Inorganic chemistry》2005,44(15):5328-5335
Solid-state reactions of lanthanide(III) oxide (and lanthanide(III) oxyhalide), transition metal halide (and transition metal oxide), and TeO(2) at high temperature lead to six new lanthanide transition metal tellurium(IV) oxyhalides with three different types of structures, namely, DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, ErCuTe(2)O(6)Br, Sm(2)Mn(Te(5)O(13))Cl(2), Dy(2)Cu(Te(5)O(13))Br(2), and Nd(4)Cu(TeO(3))(5)Cl(3). Compounds DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, and ErCuTe(2)O(6)Br are isostructural. The lanthanide(III) ion is eight-coordinated by eight oxygen atoms, and the copper(II) ion is five-coordinated by four oxygens and a halide anion in a distorted square pyramidal geometry. The interconnection of Ln(III) and Cu(II) ions by bridging tellurite anions results in a three-dimensional (3D) network with tunnels along the a-axis; the halide anion and the lone-pair electrons of the tellurium(IV) ions are oriented toward the cavities of the tunnels. Compounds Sm(2)Mn(Te(5)O(13))Cl(2) and Dy(2)Cu(Te(5)O(13))Br(2) are isostructural. The lanthanide(III) ions are eight-coordinated by eight oxygens, and the divalent transition metal ion is octahedrally coordinated by six oxygens. Two types of polymeric tellurium(IV) oxide anions are formed: Te(3)O(8)(4)(-) and Te(4)O(10)(4)(-). The interconnection of the lanthanide(III) and divalent transition metal ions by the above two types of polymeric tellurium(IV) oxide anions leads to a 3D network with long, narrow-shaped tunnels along the b-axis. The halide anions remain isolated and are located at the above tunnels. Nd(4)Cu(TeO(3))(5)Cl(3) features a different structure. All five of the Nd(III) ions are eight-coordinated (NdO(8) for Nd(1), Nd(2), Nd(4), and Nd(5) and NdO(7)Cl for Nd(3)), and the copper(I) ion is tetrahedrally coordinated by four chloride anions. The interconnection of Nd(III) ions by bridging tellurite anions resulted in a 3D network with large tunnels along the b-axis. The CuCl(4) tetrahedra are interconnected into a 1D two-unit repeating (zweier) chain via corner-sharing. These 1D copper(I) chloride chains are inserted into the tunnels of the neodymium(III) tellurite via Nd-Cl-Cu bridges. Luminescent studies show that ErCuTe(2)O(6)Cl and Nd(4)Cu(TeO(3))(5)Cl(3) exhibit strong luminescence in the near-IR region. Magnetic measurements indicate the antiferromagnetic interactions between magnetic centers in these compounds.  相似文献   

2.
Several new large polyoxotungstates have been synthesized by reaction of lanthanide cations with the well-known "As(4)W(40)" anion, [(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)](28-) (1). The heteropolyanions [(H(2)O)(11)Ln(III)(Ln(III)(2)OH)(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)](20)(-) (Ln = Ce, Nd, Sm, Gd) (2-4) (Ln(3)As(4)W(40)) and [M(m)()(H(2)O)(10)(Ln(III)(2)OH)(2)(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)]((18-m)(-)) (Ln = La, Ce, Gd and M = Ba, K, none) (5-7) (Ln(4)As(4)W(40)) have been isolated as alkali metal and ammonium salts, respectively, and characterized by single-crystal X-ray analysis, elemental analysis, and IR and (183)W-NMR spectroscopy. The X-ray analyses revealed interanionic W-O-Ln bonds between adjacent Ln(x)()As(4)W(40) units forming a "dimer" for x = 3 and chains for x = 4. Upon dissolving in water these bonds hydrolyze and the monomeric species form. The straightforward syntheses which require the use of concentrated NaCl solutions (1-4 M) and the addition of stoichiometric amounts of Ba(2+) or K(+) reemphasize the importance of the presence of appropriate countercations for the assembly of large polyoxometalate structures.  相似文献   

3.
Liu S  Li D  Xie L  Cheng H  Zhao X  Su Z 《Inorganic chemistry》2006,45(20):8036-8040
Reactions of 1:13 heteropoly anions [MV13O38](7-) (M = Mn, Ni) and lanthanide cations Ln3+ (Ln = La, Ce, or Pr) produce five isomorphic compounds, which are crystallized in the triclinic crystal system, space group P1, and formulated as [Ln6(H2O)25(MV12O38)(HMV13O38)].nH2O ((1) Ln = La, M = Mn, and n approximately 31; (2) Ln = Ce, M = Mn, and n approximately 29; (3) Ln = Pr, M = Mn, and n approximately 31; (4) Ln = La, M = Ni, and n approximately 28; (5) Ln = Pr, M = Ni, and n approximately 33). These compounds are two-dimensional polymeric structures constructed by hydrated lanthanide cations and two types of heteropoly anions, [MV13O38](7-) and [MV12O38](12-). In contrast to the previous reported 1:13 heteropoly anions, all with disordered structures, [MV13O38](7-) clusters in 1-5 are non-disordered with a distinct mode. The second kind of anionic cluster [MV12O38](12-) with O(h) symmetry, which consists of 13 entire edge-sharing MO(6) (M = V, Mn or Ni) octahedra, has not been reported hitherto. The emergence of the new cluster may be correlated to the six capping lanthanide cations surrounding it with a stabilization effect. In this paper, the syntheses and structures of the five polymeric lanthanide heteropolyvanadates of manganese(IV) and nickel(IV) have been presented.  相似文献   

4.
Zhang SY  Mao JG 《Inorganic chemistry》2011,50(11):4934-4943
Hydrothermal reactions of lanthanide(III) oxide, molybdenum oxide, and SeO(2) at 230 °C lead to five new molybdenum-rich quaternary lanthanide selenites with two types of structures, namely, H(3)Ln(4)Mo(9.5)O(32)(SeO(3))(4)(H(2)O)(2) (Ln = La, 1; Nd, 2) and Ln(2)Mo(3)O(10)(SeO(3))(2)(H(2)O) (Ln = Eu, 3; Dy, 4; Er, 5). Compounds 1 and 2 feature a complicated three-dimensional (3D) architecture constructed by the intergrowth of infinite molybdenum selenite chains of [Mo(4.75)SeO(19)](5.5-) and one-dimensional (1D) lanthanide selenite chains. The structures of 3, 4, and 5 exhibit 3D network composed of 1D [Mo(3)SeO(13)](4-) anionic chains connected by lanthanide selenite chains. The molybdenum selenite chain of [Mo(4.75)SeO(19)](5.5-) in 1 and 2 is composed of a pair of [Mo(3)SeO(13)](4-) chains as in 3, 4, and 5 interconnected by a [Mo(1.75)O(8)](5.5-) double-strand polymer via corner-sharing. The lanthanide selenite chains in both structures are similar in terms of coordination modes of selenite groups as well as the coordination environments of lanthanide(III) ions. Luminescent studies at both room temperature and 10 K indicate that compound 2 displays strong luminescence in the near-IR region and compound 3 exhibits red fluorescent emission bands with a luminescent lifetime of 0.57 ms. Magnetic properties of these compounds have been also investigated.  相似文献   

5.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

6.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

7.
New quaternary lithium - d(0) cation - lone-pair oxides, Li(6)(Mo(2)O(5))(3)(SeO(3))(6) (Pmn2(1)) and Li(2)(MO(3))(TeO(3)) (P2(1)/n) (M = Mo(6+) or W(6+)), have been synthesized and characterized. The former is noncentrosymmetric and polar, whereas the latter is centrosymmetric. Their crystal structures exhibit zigzag anionic layers composed of distorted MO(6) and asymmetric AO(3) (A = Se(4+) or Te(4+)) polyhedra. The anionic layers stack along a 2-fold screw axis and are separated by Li(+) cations. Powder SHG measurements on Li(6)(Mo(2)O(5))(3)(SeO(3))(6) using 1064 nm radiation reveal a SHG efficiency of approximately 170 × α-SiO(2). Particle size vs SHG efficiency measurements indicate Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is type 1 nonphase-matchable. Converse piezoelectric measurements result in a d(33) value of ~28 pm/V and pyroelectric measurements reveal a pyroelectric coefficient of -0.43 μC/m(2)K at 50 °C for Li(6)(Mo(2)O(5))(3)(SeO(3))(6). Frequency-dependent polarization measurements confirm that Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is nonferroelectric, i.e., the macroscopic polarization is not reversible, or 'switchable'. Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements and electron localization function calculations were also done for all materials.  相似文献   

8.
Dual shell-like nanoscopic magnetic clusters featuring a polynuclear nickel(II) framework encapsulating that of lanthanide ions (Ln = La, Pr, and Nd) were synthesized using Ni(NO3)(2).6H2O, Ln(NO3)(3).6H2O, and iminodiacetic acid (IDA) under hydrothermal conditions. Structurally established by crystallographic studies, these clusters are [La20Ni30(IDA)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)(6).72H2O (1), [Ln20Ni21(C4H5NO4)21(OH)24(C2H2O3)6(C2O4)3(NO3)9(H2O)12](NO3)9.nH2O [C2H2O3 is the alkoxide form of glycolate; Ln = Pr (2), n = 42; Nd (3), n = 50], and {[La4Ni5Na(IDA)5(CO3)(NO3)4(OH)5(H2O)5][CO3].10H2O} infinity (4). Carbonate, oxalate, and glycolate are products of hydrothermal decomposition of IDA. Compositions of these compounds were confirmed by satisfactory elemental analyses. It has been found that the cluster structure is dependent on the identity of the lanthanide ion as well as the starting Ln/Ni/IDA ratio. The cationic cluster of 1 features a core of the Keplerate type with an outer icosidodecahedron of Ni(II) ions encaging a dodecahedral kernel of La(III). Clusters 2 and 3, distinctly different from 1, are isostructural, possessing a core of an outer shell of 21 Ni(II) ions encapsulating an inner shell of 20 Ln(III) ions. Complex 4 is a three-dimensional assembly of cluster building blocks connected by units of Na(NO3)/La(NO3)3; the structure of the building block resembles closely that of 1, with a hydrated La(III) ion internalized in the decanuclear cage being an extra feature. Magnetic studies indicated ferromagnetic interactions in 1, while overall antiferromagnetic interactions were revealed for 2 and 3. The polymeric, three-dimensional cluster network 4 displayed interesting ferrimagnetic interactions.  相似文献   

9.
Mononuclear complexes [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] (bpym = 2,2'-bipyrimidine), in which one of the bipyrimidine sites is vacant, have been used as "complex ligands" to prepare heterodinuclear d-f complexes in which a lanthanide tris(1,3-diketonate) unit is attached to the secondary bipyrimidine site to evaluate the ability of d-block chromophores to act as antennae for causing sensitized near-infrared (NIR) luminescence from adjacent lanthanide(III) centers. The two sets of complexes so prepared are [Re(CO)(3)Cl(mu-bpym)Ln(fod)(3)] (abbreviated as Re-Ln; where Ln = Yb, Nd, Er) and [(F(3)C-C(6)H(4)-CC)(2)Pt(mu-bpym)Ln(hfac)(3)] (abbreviated as Pt-Ln; where Ln = Nd, Gd). Members of both series have been structurally characterized; the metal-metal separation across the bipyrimidine bridge is approximately 6.3 A in each case. In these complexes, the (3)MLCT (MLCT = metal to ligand charge-transfer) luminescences of the mononuclear [Re(bpym)(CO)(3)Cl] and [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] complexes are quenched by energy transfer to those lanthanides (Ln = Yb, Nd, Er) that have low-lying f-f states capable of NIR luminescence; as a result, sensitized NIR luminescence is seen from the lanthanide center following excitation of the d-block unit. In the solid state, quenching of the luminescence from the d-block chromophore is complete, indicating efficient d --> f energy transfer, as a result of the short metal-metal separation across the bipyrimidine bridge. In a CH(2)Cl(2) solution, partial dissociation of the dinuclear complexes into the mononuclear units occurs, with the result that some (3)MLCT luminescence is observed from mononuclear [Re(bpym)(CO)(3)Cl] or [Pt(bpym)(CC-C(6)H(4)CF(3))(2)] present in the equilibrium mixture. Solution UV-vis and luminescence titrations, carried out by the addition of portions of Ln(fod)(3)(H(2)O)(2) or Ln(hfac)(3)(H(2)O)(2) to the d-block complex ligands, indicate that binding of the lanthanide tris(1,3-diketonate) unit at the secondary bipyrimidine site to give the d-f dinuclear complexes occurs with an association constant of ca. 10(5) M(-)(1).  相似文献   

10.
Six lanthanide(iii)-2,5-dihydroxy-1,4-benzenedicarboxylate frameworks, namely, [Ln(H(2)-DHBDC)(1.5)(H(2)O)(2)](n) (Ln = La (1) and Pr (2); H(4)-DHBDC = 2,5-dihydroxy-1,4-benzenedicarboxylic acid), {[Nd(H(2)-DHBDC)(1.5)(H(2)O)(3)](H(2)O)}(n) (3), {[Eu(H(2)-DHBDC)(NO(3))(H(2)O)(4)](H(2)O)(2)}(n) (4), and {[Ln(2)(H(2)-DHBDC)(2)(DHBDC)(0.5)(H(2)O)(3)](H(2)O)(4)}(n) (Ln = Gd (5) and Dy (6)), with four different structural types ranging from 1D chain, 2D layer to 3D networks have been synthesized and structurally characterized. Compounds La (1) and Pr (2) are isomorphous and exhibit 3D frameworks with the unique 1D tubular channels. Compounds Nd (3) and Eu (4) are 2D layer and 1D zigzag chain, respectively, which are further extended to 3D supramolecular frameworks through extensive hydrogen bonds. Isomorphous compounds of Gd (5) and Dy (6) are 3D frameworks constructed from secondary infinite rod-shaped metal-carboxylate/hydroxyl building blocks. While the hydroxyl groups as secondary functional groups in the 1D chain of Eu (4) and 2D layer of Nd (3) are not bonded to the lanthanide centers, the hydroxyl groups in the 3D frameworks of La (1), Pr (2), Gd (5), and Dy (6) participate in coordinating to lanthanide centers and thus modify the structural types of theses compounds. The magnetic data of compounds Pr (2), Nd (3), Gd (5), and Dy (6) have been investigated in detail. In addition, elemental analysis, IR spectra, powder X-ray diffraction (PXRD) patterns and thermogravimetric analysis of these compounds are described.  相似文献   

11.
Co-crystallization of K2[Ru(bipy)(CN)4] with lanthanide(III) salts (Ln = Pr, Nd, Gd, Er, Yb) from aqueous solution affords coordination oligomers and networks in which the [Ru(bipy)(CN)4]2- unit is connected to the lanthanide cation via Ru-CN-Ln bridges. The complexes fall into two structural types: [{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}] x xH2O (Ln = Pr, Er, Yb; m = 7, 6, 6, respectively), in which two [Ru(bipy)(CN)4]2- units are connected to a single lanthanide ion by single cyanide bridges to give discrete trinuclear fragments, and [{Ru(bipy)(CN)4}3{Ln(H2O)4}2] x xH2O (Ln = Nd, Gd), which contain two-dimensional sheets of interconnected, cyanide-bridged Ru2Ln2 squares. In the Ru-Gd system, the [Ru(bipy)(CN)4]2- unit shows the characteristic intense (3)metal-to-ligand charge transfer luminescence at 580 nm with tau = 550 ns; with the other lanthanides, the intensity and lifetime of this luminescence are diminished because of a Ru --> Ln photoinduced energy transfer to low-lying emissive states of the lanthanide ions, resulting in sensitized near-infrared luminescence in every case. From the degree of quenching of the Ru-based emission, Ru --> Ln energy-transfer rates can be estimated, which are in the order Yb (k(EnT) approximately 3 x 10(6) sec(-1), the slowest energy transfer) < Er < Pr < Nd (k(EnT) approximately 2 x 10(8) sec(-1), the fastest energy transfer). This order may be rationalized on the basis of the availability of excited f-f levels on the lanthanide ions at energies that overlap with the Ru-based emission spectrum. In every case, the lifetime of the lanthanide-based luminescence is short (tens/hundreds of nanoseconds, instead of the more usual microseconds), even when the water ligands on the lanthanide ions are replaced by D2O to eliminate the quenching effects of OH oscillators; we tentatively ascribe this quenching effect to the cyanide ligands.  相似文献   

12.
The reaction of [W(CN)(8)](3-) with Ln(3+) and pyrazine in acetonitrile yielded a series of isostructural compounds formulated as Ln(H(2)O)(4)(pyrazine)(0.5)W(CN)(8) (Ln = La(1), Ce(2), Pr(3), Nd(4), Sm(5), Eu(6), Gd(7)). The Ln(iii) and W(v) centers in the structure are linked through cyanide groups to form two-dimensional (2D) layers, which are further pillared by pyrazine, generating 3D frameworks. The magnetic behavior for compounds 1-7 were driven by the lanthanide ions involved. The Ln(iii) and W(v) ions in compounds 2 and 5 are ferromagnetically coupled with magnetic ordering occurring at 2.8 K, comparable with magnetic ordering with the critical temperature of 1.9 K for compound 4. In addition, the antiferromagnetic interactions were observed in compounds 3 and 7, while no significant magnetic couplings were found in compounds 1 and 6.  相似文献   

13.
The luminescent transition metal complexes [Re(CO)(3)Cl(bppz)] and [Pt(CC-C(6)H(4)CF(3))(2)(bppz)] [bppz = 2,3-bis(2-pyridyl)pyrazine], in which one of the diimine binding sites of the potentially bridging ligand bppz is vacant, have been used as 'complex ligands' to make heterodinuclear d-f complexes by attachment of a {Ln(dik)(3)} fragment (dik = a 1,3-diketonate) at the vacant site. When Ln = Pr, Nd, Er or Yb the lanthanide centre has low-energy f-f excited states capable of accepting energy from the (3)MLCT excited state of the Pt(II) or Re(I) centre, quenching the (3)MLCT luminescence and affording sensitised lanthanide(III)-based luminescence in the near-IR region. UV/Vis and luminescence spectroscopic titrations allowed measurement of (i) the association constants for binding of the {Ln(dik)(3)} fragment at the vacant diimine site of [Re(CO)(3)Cl(bppz)] or [Pt(CC-C(6)H(4)CF(3))(2)(bppz)], and (ii) the degree of quenching of the (3)MLCT luminescence according to the nature of the Ln(III) centre. In all cases Nd(III) was found to be the most effective of the series at quenching the (3)MLCT luminescence of the d-block component because the high density of f-f excited states of the appropriate energy make it a particularly effective energy-acceptor.  相似文献   

14.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

15.
Initial attempts to prepare new Ln-Cd-Te-O-Cl compounds led to the isolation of two novel cadmium tellurium(IV) oxychlorides with two different types of structures, namely, [Cd(2)(Te(6)O(13))][Cd(2)Cl(6)] and Cd(7)Cl(8)(Te(7)O(17)). Both compounds feature novel polymeric tellurium(IV) oxide anions and unusual cadmium chloride substructures. The structure of [Cd(2)(Te(6)O(13))][Cd(2)Cl(6)] is composed of 1D [Cd(2)Cl(6)](2)(-) double chains and (002) [Cd(2)(Te(6)O(13))](2+) layers. The 1D Te(6)O(13)(2)(-) slab of the [Cd(2)(Te(6)O(13))](2+) layer is formed by TeO(3), TeO(4), and TeO(5) groups via corner- and edge-sharing, and it contains six- and seven-membered tellurium(IV) polyhedral rings. The structure of Cd(7)Cl(8)(Te(7)O(17)) features a 3D network with long-narrow tunnels along the b axis. The two types of structural building blocks are 1D [Te(7)O(17)](6)(-) anions and unusual corrugated [Cd(7)Cl(8)](6+) layers based on "cyclohexane-like" Cd(3)Cl(3) rings.  相似文献   

16.
Partyka DV  Holm RH 《Inorganic chemistry》2004,43(26):8609-8616
Reactions of [MO(4)](2)(-) (M = Mo, W) with certain carbon and silicon electrophiles were investigated in acetonitrile in order to produce species of potential utility in the synthesis of analogues of the sites in the xanthine oxidoreductase enzyme family. Silylation of [MoO(4)](2)(-) affords [MoO(3)(OSiPh(3))](1)(-), which with Ph(3)SiSH is converted to [MoO(2)S(OSiPh(3))](1)(-). Reaction with (Ph(3)C)(PF(6))/HS(-) yields the tetrahedral monosulfido species [MO(3)S](2)(-), previously obtained only from the aqueous system [MO(4)](2)(-)/H(2)S. Dithiolene chelate rings are readily introduced upon reaction with 1,2-C(6)H(4)(SSiMe(3))(2), leading to the square pyramidal trioxo complexes [MO(3)(bdt)](2)(-), a previously unknown dithiolene molecular type. Further ring insertion occurs upon reaction of [WO(3)(bdt)](2)(-) with 1,2-C(6)H(4)(SSiMe(3))(2), giving [WO(2)(bdt)(2)](2)(-). Related reactions occur with [ReO(4)](1)(-). Treatment with 1 equiv of (Me(3)Si)(2)S produces [ReO(3)S](1)(-); with 3 equiv of 1,2-C(6)H(4)(SSiMe(3))(2), [ReO(bdt)(2)](1)(-) is obtained with concomitant Re(VII) --> Re(V) reduction. X-ray structures are reported for [MO(3)S](z)(-) (M = Mo, W, z = 2; M = Re, z = 1), [MO(3)(bdt)](2)(-), and [WO(2)(OSiPh(3))(bdt)](1)(-), a silylation product of [WO(3)(bdt)](2)(-). [MoO(3)(bdt)](2)(-) is related to the site of inactive sulfite oxidase, and [WO(2)(OSiPh(3))(bdt)](1)(-) should closely approximate the metric features of the [(dithiolene)MoO(2)(OH)] site in inactive aldehyde/xanthine oxidoreductase. This work provides convenient syntheses of known and new derivatives of tetraoxometalates, among which is entry to a unique class of oxo-monodithiolene complexes.  相似文献   

17.
Trinuclear lanthanide complexes of the formula [Ln(3)(PPDA)(NO(3))(6)(H(2)O)(2)].NO(3).2H(2)O where Ln=La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H(2)PPDA=N,N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.  相似文献   

18.
The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to eight trinuclear complexes: trans-[M(CN)4(mu-CN)2{Ln(H2O)4(bpy)2}2][M(CN)6].8H2O (M = Fe3+ or Co3+, Ln = La3+, Ce3+, Pr3+, Nd3+, and Sm3+). The structures for the eight complexes [La2Fe] (1), [Ce2Fe] (2), [Pr2Fe] (3), [Nd2Fe] (4), [Ce2Co] (5), [Pr2Co] (6), [Nd2Co] (7), and [Sm2Co] (8) have been solved; they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular 3D architecture through hydrogen bonding and pi-pi stacking interactions. A stereochemical study of the nine-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. No significant magnetic interaction was found between the lanthanide(III) and the iron(III) ions.  相似文献   

19.
Based on an unsymmetrical 2-pyridylphosphonate ligand, two types of Ln(III)-Cu(II) compounds with three-dimensional structures were obtained under hydrothermal conditions, namely, Ln(2)Cu(3)(C(5)H(4)NPO(3))(6).4H(2)O (1.Ln; Ln=La, Ce, Pr, Nd) and Ln(2)Cu(3)(C(5)H(4)NPO(3))(6) (2.Ln; Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). Compounds 1.Ln are isostructural and crystallize in chiral cubic space group I2(1)3. In these structures, each Ln ion is nine-coordinate and has a tricapped triprismatic geometry, while each Cu center is six-coordinate with an octahedral environment. The {LnO(9)} polyhedra and {CuN(2)O(4)} octahedra are connected by edge sharing to form an inorganic open framework structure with a 3-connected 10-gon (10,3) topology in which the Ln and Cu atoms are alternately linked by the phosphonate oxygen atoms. Compounds 2.Ln are isostructural and crystallize in trigonal space group R3. In these structures, the {LnO(6)} octahedra are triply bridged by the {CPO(3)} tetrahedra by corner sharing to form an infinite chain along the c axis. Each chain is connected to its six equivalents through corner sharing of {CPO(3)} tetrahedra and {CuN(2)O(2)} planes to form a three-dimensional framework structure in which the Ln and Cu atoms are linked purely by O-P-O units. The formation of these two types of structures is rationalized by quantum chemical calculations, which showed that both the lanthanide contraction and the electron configuration of Cu(II) play important roles. When Cu(II) was replaced by Zn(II), only the first type of compounds resulted. The magnetic properties of complexes 1.Ln and 2.Ln were investigated. The nature of Ln(III)-Cu(II) (Ln=Ce, Pr, Nd) interactions is illustrated by comparison with their Ln(III)-Zn(II) analogues.  相似文献   

20.
The new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21). All of these trimetallic species display absorption bands ascribed to metal-to-ligand charge-transfer (MLCT) excitations, and luminescence measurements show that these excited states can be used to sensitise near-infrared emission from LnIII (Ln=Nd, Er or Yb) ions. Single crystal X-ray structures of L1 and [RuII(bipy)2(L2H)](H2PO4)3.(CH3)2CO.0.8H2O were obtained, the latter revealing the presence of H2PO4- counter anions, the source of which is presumed to be hydrolysis of PF6- ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号