首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, Du (J Nonlinear Anal 72:2259–2261, 2010) by using a nonlinear scalarization function, in the setting of locally convex topological vector spaces, could transfer a cone metric space to a usual metric space. Simultaneously, Amini-Harandi and Fakhar (Com Math Appl 59:3529–3534, 2010) by using a notion of base for the cone , in the setting of Banach spaces, could do the same. In this note we will see that two methods coincide and moreover they are valid for topological vector spaces and it is not necessary that we only consider the cones which have a compact base. Finally, it is worth noting that the nature of this note is similar to Caglar and Ercan (Order-unit-metric spaces, arXiv:1305.6070 [math.FA], 2013).  相似文献   

2.
In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising.  相似文献   

3.
4.
《Optimization》2012,61(11):2195-2206
ABSTRACT

This paper considers the symmetric cone complementarity problem. A new projection and contraction method is presented which only requires some projection calculations and functional computations. It is proved that the iteration sequence produced by the proposed method converges to a solution of the symmetric cone complementarity problem under the condition that the underlying transformation is monotone. Numerical experiments also show the effectiveness of this method.  相似文献   

5.
《Optimization》2012,61(8):965-979
We extend the smoothing function proposed by Huang, Han and Chen [Journal of Optimization Theory and Applications, 117 (2003), pp. 39–68] for the non-linear complementarity problems to the second-order cone programming (SOCP). Based on this smoothing function, a non-interior continuation method is presented for solving the SOCP. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that our algorithm is globally and locally superlinearly convergent in absence of strict complementarity at the optimal solution. Numerical results indicate the effectiveness of the algorithm.  相似文献   

6.
We present an analytic center cutting surface algorithm that uses mixed linear and multiple second-order cone cuts. Theoretical issues and applications of this technique are discussed. From the theoretical viewpoint, we derive two complexity results. We show that an approximate analytic center can be recovered after simultaneously adding p second-order cone cuts in O(plog (p+1)) Newton steps, and that the overall algorithm is polynomial. From the application viewpoint, we implement our algorithm on mixed linear-quadratic-semidefinite programming problems with bounded feasible region and report some computational results on randomly generated fully dense problems. We compare our CPU time with that of SDPLR, SDPT3, and SeDuMi and show that our algorithm outperforms these software packages on problems with fully dense coefficient matrices. We also show the performance of our algorithm on semidefinite relaxations of the maxcut and Lovasz theta problems. M.R. Oskoorouchi’s work has been completed with the support of the partial research grant from the College of Business Administration, California State University San Marcos, and the University Professional Development Grant. J.E. Mitchell’s material is based upon work supported by the National Science Foundation under Grant No. 0317323. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.  相似文献   

7.
Based on a regularized Chen–Harker–Kanzow–Smale (CHKS) smoothing function, we propose a new smoothing and regularization Newton method for solving the symmetric cone complementarity problem. By using the theory of Euclidean Jordan algebras, we establish the global and local quadratic convergence of the method on certain assumptions. The proposed method uses a nonmonotone line search technique which includes the usual monotone line search as a special case. In addition, our method treats both the smoothing parameter \(\mu \) and the regularization parameter \(\varepsilon \) as independent variables. Preliminary numerical results are reported which indicate that the proposed method is effective.  相似文献   

8.

In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.

  相似文献   

9.
The necessary and sufficient conditions for solution sets of linear multicriteria decision problems are given in the first part of this paper. In order to find the solution sets by applying the theorem describing the conditions, the constructions of the open polar cone and the semi-open polar cone of a given polyhedral cone are required.A method of construction of the polar cone, open polar cone, and semi-open polar cone is presented. For this purpose, edge vectors of the polar cone are introduced and characterized in terms of the generating vectors of a given polyhedral cone. It is shown that these polar cones are represented by the edge vectors.Numerical examples of linear multicriteria decision problems are solved to illustrate the construction of the polar cones and to explain the application of the theorem to obtain the solution sets.The author is grateful to Professor P. L. Yu for helpful comments concerning the development of Theorem 2.1.  相似文献   

10.
A new smoothing function for the second-order cone programming is given by smoothing the symmetric perturbed Fischer–Burmeister function. Based on this new function, a one-step smoothing Newton method is presented for solving the second-order cone programming. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. This algorithm does not have restrictions regarding its starting point and is Q-quadratically convergent. Numerical results suggest the effectiveness of our algorithm.  相似文献   

11.
In this paper, the second order cone complementarity problem is studied. Based on a perturbed symmetrically smoothing function, which has coerciveness under proper conditions, we present a smoothing Newton method for this problem. The boundedness of the level set can be obtained from the coerciveness, which plays an important role in the convergence analysis. Furthermore, the proposed algorithm for the reformulation has no restrictions on the starting point and solves only one system of equations. Preliminary numerical results indicate that the algorithm is effective.  相似文献   

12.
In this paper, the second-order cone complementarity problem is studied. Based on the Fischer–Burmeister function with a perturbed parameter, which is also called smoothing parameter, a regularization smoothing Newton method is presented for solving the sequence of regularized problems of the second-order cone complementarity problem. Under proper conditions, the global convergence and local superlinear convergence of the proposed algorithm are obtained. Moreover, the local superlinear convergence is established without strict complementarity conditions. Preliminary numerical results suggest the effectiveness of the algorithm.  相似文献   

13.
In this paper, we employ the projection operator to design a semismooth Newton algorithm for solving nonlinear symmetric cone programming (NSCP). The algorithm is computable from theoretical standpoint and is proved to be locally quadratically convergent without assuming strict complementarity of the solution to NSCP.  相似文献   

14.
An O() rate of convergence bound is established for a version of the penalty method for variational inequalities in a reflexive Banach space that are associated with a strongly monotone Lipschitz operator and are subject to cone constraints. It is shown that the fictitious domain method can be interpreted as a penalty method, and the corresponding convergence theorems can be deduced from the general penalty-method theorems. An error bound of the Galerkin method for the penalty problem is proved for the case of variational inequalities in a Banach space densely embedded in a Hilbert space. A convergence theorem is given for an iteration process solving the Galerkin-method finite-dimensional problem.Kiev University. Translated from Vychislitel'naya i Prikladnaya Matematika, No. 75, pp. 3–11, 1991.  相似文献   

15.
The circular cone programming (CCP) problem is to minimize or maximize a linear function over the intersection of an affine space with the Cartesian product of circular cones. In this paper, we study nondegeneracy and strict complementarity for the CCP, and present a nonmonotone smoothing Newton method for solving the CCP. We reformulate the CCP as a second-order cone programming (SOCP) problem using the algebraic relation between the circular cone and the second-order cone. Then based on a one parametric class of smoothing functions for the SOCP, a smoothing Newton method is developed for the CCP by adopting a new nonmonotone line search scheme. Without restrictions regarding its starting point, our algorithm solves one linear system of equations approximately and performs one line search at each iteration. Under mild assumptions, our algorithm is shown to possess global and local quadratic convergence properties. Some preliminary numerical results illustrate that our nonmonotone smoothing Newton method is promising for solving the CCP.  相似文献   

16.
Analogous to the nonlinear complementarity problem and the semi-definite complementarity problem, a popular approach to solving the second-order cone complementarity problem (SOCCP) is to reformulate it as an unconstrained minimization of a certain merit function over RnRn. In this paper, we present a descent method for solving the unconstrained minimization reformulation of the SOCCP which is based on the Fischer–Burmeister merit function (FBMF) associated with second-order cone [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327], and prove its global convergence. Particularly, we compare the numerical performance of the method for the symmetric affine SOCCP generated randomly with the FBMF approach [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327]. The comparison results indicate that, if a scaling strategy is imposed on the test problem, the descent method proposed is comparable with the merit function approach in the CPU time for solving test problems although the former may require more function evaluations.  相似文献   

17.
《Optimization》2012,61(8):1173-1197
We consider a class of derivative-free descent methods for solving the second-order cone complementarity problem (SOCCP). The algorithm is based on the Fischer–Burmeister (FB) unconstrained minimization reformulation of the SOCCP, and utilizes a convex combination of the negative partial gradients of the FB merit function ψFB as the search direction. We establish the global convergence results of the algorithm under monotonicity and the uniform Jordan P-property, and show that under strong monotonicity the merit function value sequence generated converges at a linear rate to zero. Particularly, the rate of convergence is dependent on the structure of second-order cones. Numerical comparisons are also made with the limited BFGS method used by Chen and Tseng (An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Program. 104(2005), pp. 293–327), which confirm the theoretical results and the effectiveness of the algorithm.  相似文献   

18.
The affine second-order cone complementarity problem (SOCCP) is a wide class of problems that contains the linear complementarity problem (LCP) as a special case. The purpose of this paper is to propose an iterative method for the symmetric affine SOCCP that is based on the idea of matrix splitting. Matrix-splitting methods have originally been developed for the solution of the system of linear equations and have subsequently been extended to the LCP and the affine variational inequality problem. In this paper, we first give conditions under which the matrix-splitting method converges to a solution of the affine SOCCP. We then present, as a particular realization of the matrix-splitting method, the block successive overrelaxation (SOR) method for the affine SOCCP involving a positive definite matrix, and propose an efficient method for solving subproblems. Finally, we report some numerical results with the proposed algorithm, where promising results are obtained especially for problems with sparse matrices.  相似文献   

19.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

20.

This paper addresses problems of second-order cone programming important in optimization theory and applications. The main attention is paid to the augmented Lagrangian method (ALM) for such problems considered in both exact and inexact forms. Using generalized differential tools of second-order variational analysis, we formulate the corresponding version of second-order sufficiency and use it to establish, among other results, the uniform second-order growth condition for the augmented Lagrangian. The latter allows us to justify the solvability of subproblems in the ALM and to prove the linear primal–dual convergence of this method.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号