首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Phospholipid vesicles were covalently attached to iminoaldehyde‐coated fused silica capillaries and applied to the separation of model steroids by open‐tubular CEC (OT‐CEC). The effects of reducing the formed Schiff's base with sodium borohydride and of the liposome composition on the stability of the coating were investigated. In addition, the studies were focused on the optimization of running conditions (pH values and composition of BGE solution) when CEC, using capillaries covalently bound with liposome dispersions, was coupled to MS. The effect of cholesterol in the liposome dispersion on the binding of model analytes was studied, using liposome dispersions comprising 80:20 mol% zwitterionic 1‐palmitoyl‐2‐oleyl‐sn‐glycero‐3‐phosphocholine (POPC) and the negatively charged phospholipid 1 ‐ palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phospho‐l ‐serine (POPS) and 40:40:20 mol% POPC/POPS/cholesterol. Cholesterol in liposomes (greatly) enhanced the stability of the capillaries by making the coatings more rigid, resulting in lower retention factors for all the studied model steroids. Although most of the studies were carried out by open tubular CEC‐UV Vis, the applicability of the capillaries to on‐line CEC‐MS was demonstrated as well. On‐line CEC‐MS studies on model steroids proved the suitability of coated capillaries for analyte–lipid membrane interaction studies, and especially for such analytes that are difficult to detect by conventional on‐line UV Vis.  相似文献   

2.
Summary This paper introduces a novel, highly effective method of producing packed capillaries for use in capillary electrochromatography (CEC) or microbore HPLC. It is our opinion that CEC offers significant advantages for future separation systems particularly with MS detection and these methods will assist the development of the capillary production technology.  相似文献   

3.
Summary This paper introduces a novel, highly effective method of producing packed capillaries for use in capillary electrochromatography (CEC) or microbore HPLC. It is our opinion that CEC offers significant advantages for future separation systems particularly with MS detection and these methods will assist the development of the capillary production technology.  相似文献   

4.
Review coupling of capillary electrochromatography to mass spectrometry   总被引:3,自引:0,他引:3  
This review discusses the development of capillary electrochromatography (CEC) coupled to mass spectrometric (MS) detection over the last few years. Major topics addressed are instrumental setups employed and applications of this technology published in the recent literature. The instrumental section includes a discussion of the most commonly used interfaces for the hyphenation of CEC and MS as well as ionization techniques. Applications reviewed in this paper come from a variety of different fields such as the analysis of biomolecules like proteins, peptides, amino acids or carbohydrates, chiral separations or the analysis of pharmaceutical an their metabolites in a series of matrices.  相似文献   

5.
Capillary electrochromatography (CEC) is a liquid phase analytical separation technique that is generally carried out with packed capillary columns by electroosmotically driven mobile phase at high electric field strength. The analytes are separated by virtue of the differences in their distribution between the mobile and stationary phases and, if charged in their electrophoretic mobilities as well. It is thus considered a hybrid of liquid chromatography and capillary electrophoresis and is expected to combine the high peak efficiency of capillary zone electrophoresis (CZE) with the versatility and loading capacity of HPLC. This review explores the potential use of on-line mass spectrometric detection for CEC. It discusses key design issues that focus on the physical and electrical arrangement of the CEC column with respect to the electrospray orifice inlet. The salient features of the sheathless, sheath flow and liquid junction interfaces that are frequently employed while coupling a CEC column to an electrospray ionization mass spectrometry system are also highlighted. Possible configurations of the CEC column outlet that would obviate the need for pressurizing the capillary column are also presented. While coupling CEC with MS both the nature of the interface and the configuration of the column outlet will determine the optimal arrangement. The review also discusses bandspreading that occurs when a connecting tube is employed to transfer mobile phase from the column outlet to the atmospheric region of the electrospray source with a concomitant loss in sensitivity. Selected examples that highlight the potential of this technique for a wide range of applications are also presented.  相似文献   

6.
Kang J  Wistuba D  Schurig V 《Electrophoresis》2002,23(22-23):4005-4021
Recent progress in enantiomeric separations by capillary electrochromatography (CEC) is reviewed. The development of simple and robust CEC column technologies plays an important role for popularization of CEC. During the last several years, various approaches for the preparation of enantioselective columns have been reported. Currently, the monolithic column technology (continuous beds) represents the most advanced approach for the preparation of CEC columns. The development of new chiral stationary phase used for CEC is another important issue in this field. Fundamental investigations on electrochromatographic behaviors of various CSPs are necessary in order to understand the separation mechanism and thus improve the separation performance. Some chiral stationary phases performed better under nonaqueous CEC conditions than reversed-phase conditions. Coupling CEC with mass spectrometry (MS) provides a powerful tool for enantiomeric separation. Finally, some applications of enantiomeric separation by CEC are summarized.  相似文献   

7.
The high separation efficiency and loading capacity of capillary electrochromatography (CEC) make it an attractive separation mode for coupling with mass spectrometry (MS), which has the ability to unambiguously identify analytes with high selectivity and sensitivity. We present an overview of recent advances on both instrumentation and separation columns employed in CEC-MS systems. In particular, the main characteristics of the stationary phases, as well as the configurations of the column outlet that are related with the coupling arrangements of the MS ionization sources, are reported. At present, packed columns and conventional electrospray ionization (ESI) sources are mainly employed in CEC-MS. Nevertheless, the use of monolithic capillary columns and nanoelectrospray sources has the potential for wide acceptance in the next future. Moreover, the main features of several mass analyzers including ion trap, quadrupole, time-of-flight, magnetic sector, and Fourier transform-ion cyclotron resonance are examined. Finally, current applications of this technology, mainly in the pharmaceutical field and proteomics, are reviewed.  相似文献   

8.
In this study, an open‐tubular capillary electrochromatography (OT‐CEC) column with a monolithic layer of molecularly imprinted polymer (MIP) based on methacrylic acid, ethylene glycol dimethacrylate, and 4‐styrenesulfonic acid was utilized for the simultaneous separation and characterization of phospholipid (PL) molecular structures by interfacing with electrospray ionization‐tandem mass spectrometry (ESI‐MS‐MS). Introducing an MIP‐based monolith along with charged species at the OT column made it possible to separate PL molecules based on differences in head groups and acyl chain lengths in CEC. For the interface of OT‐CEC with ESI‐MS‐MS, a simple nanospray interface utilizing a sheath flow was developed and the resulting OT‐CEC‐ESI‐MS‐MS was able to separate PL standards (phosphatidylserines, phosphatidylethanolamines, phosphatidylglycerols, phosphatidic acid, and lysophosphatidylglycerols). The developed method was applied to human urinary lipid extracts, and resulted in the separation and structural identification of 18 molecules by data‐dependent collision‐induced dissociation.  相似文献   

9.
Benzodiazepines, namely flunitrazepam and its three major metabolites, were successfully separated by microemulsion electrokinetic chromatography. Separation was achieved using an untreated fused-silica capillary (48 cm (effective length 40 cm) x 50 num) at 25 kV; detection was performed by UV at 220 nm. The microemulsion system consisted of 70 mM octane, 800 mM 1-butanol, 80 mM sodium dodecyl sulfate (SDS) and 10 mM borate buffer, pH 9. Very high efficiencies (up to 400 000 plates) and resolution better than 3 were achieved. Since this technique is not compatible with mass spectrometry (MS) detection, a capillary electrochromatographic (CEC) method was developed to separate flunitrazepam and its metabolites. The effects of mobile phase composition and pH as well as voltage and temperature were systematically investigated. The optimized CEC method allowed the baseline separation of the investigated compounds. For the on-line coupling of CEC with electrospray ionization-mass spectrometry, the column was connected to a void fused-silica capillary using a Teflon connection. This configuration was found efficient and suitable for hyphenation of commercial CEC and MS instrumentation using commercially available CEC columns.  相似文献   

10.
The successful coupling of capillary electrochromatography (CEC) to an ion trap mass spectrometer via a nanoelectrospray interface (nESI) is described. Using a conductively coated tip butted to the end of a CEC column, it was possible to obtain a stable spray without any sheath liquid being employed. Selected small peptides were separated with CEC columns (100 microm i.d./25 cm long) packed with 3 microm Hypersil C8 or C18 bonded silica particles with an eluent composed of ammonium acetate/acetonitrile. Peptide mixtures of desmopressin, peptide A, oxytocin, carbetocin and [Met(5)]-enkephalin were detected in the mid-attomole range, which is the lowest amount analyzed using CEC combined with MS detection. It was also observed that sensitivity can be compromised at higher separation voltages. We demonstrate that CEC/nESI-MS, at the current stage of development, represents one of the most sensitive systems for peptide analysis.  相似文献   

11.
This article reviews the most recent developments concerning the determination of antibiotics by CE and CEC. The most employed CE separation modes were CZE and MEKC although microemulsion electrokinetic capillary chromatoghraphy was also employed. For the first time, CE was coupled to MS that was applied as a specific and confirmatory detection technique for the analysis of antibiotics. The analytical characteristics of the developed methodologies as well as the different applications reported in the literature on this subject from June 2005 until May 2007 are included in this article. To give the most relevant information on this topic, the experimental conditions employed to achieve the analysis of antibiotics by CE and CEC are provided together with the main applications performed in the pharmaceutical, agrochemical, biological, food, and environmental fields, emphacizing sample preparation requirements needed in each case.  相似文献   

12.
 The separation of pyrimidine derivatives by capillary electrochromatography (CEC) using either UV or mass spectrometric detection is described. For UV detection an aqueous phosphate carrier electrolyte containing acetonitrile is employed. The results are compared to the analysis of the same compounds by micellar electrokinetic chromatography in terms of selectivity, migration times, linearity, and detection limits. For the combination of CEC and mass spectrometry (MS) an inexpensive way to couple commercially available instruments is presented; the interface consists of an electrically grounded stainless steel connector (containing a stainless steel frit) serving as the electrode and coupling the CEC capillary with a fused silica transfer capillary to the MS instrument. Alternatively, a PEEK adapter combining the CEC capillary and a grounded stainless steel transfer capillary serving as the electrode is employed. To avoid the formation of hydrogen gas at the coupling piece or the transfer capillary, p-benzoquinone is added to the carrier electrolyte consisting of aqueous ammonium acetate and acetonitrile.  相似文献   

13.
Zhang  Yulin  Huang  Liang  Chen  Qinhua  Chen  Zilin 《Chromatographia》2012,75(5-6):289-296

A silica monolithic column chemically modified with l-pipecolic acid as chiral stationary phase has been developed for chiral separation of dansyl amino acids by capillary electrochromatography–mass spectrometry (CEC–MS). The monolithic column was prepared by a sol–gel process and subsequent chemical modification by l-pipecolic acid as chiral selector with 3-glycidoxypropyltrimethoxysilane as spacer. Interestingly, it was found that the l-pipecolic acid-modified monolithic column can hold copper(II) ions tightly after loading Cu(II) ions during column preparation and conditioning and allows CEC separation to be conducted based on chiral ligand exchange with MS detection by a mobile phase without copper ions. It has been demonstrated that the chiral monolithic column operates well for enantioseparation of several dansyl amino acids by CEC–MS.

  相似文献   

14.
We have investigated the basic dependence of electroosmotic flow (EOF) velocity and hydrodynamic dispersion in capillary electrochromatography (CEC) on the variation of applied field and mobile phase ionic strengths employing silica-based particulate and monolithic fixed beds. These porous media have a hierarchical structure characterized by discrete intraparticle (intraskeleton) mesoporous and interparticle (interskeleton) macroporous spatial domains. While the macroporous domains contain quasi-electroneutral electrolyte solution, the ion-permselectivity (charge-selectivity) of the mesoporous domains determines the co-ion exclusion and counter-ion enrichment at electrochemical equilibrium (without superimposed electrical field) which depends on mesopore-scale electrical double layer (EDL) overlap and surface charge density. This adjustable, locally charge-selective transport realized under most general conditions forms the basis for concentration polarization (CP) induced by electrical fields superimposed in CEC. CP characterizes the formation of convective diffusion boundary layers with reduced (depleted CP zone) and increased (enriched CP zone) electrolyte concentration, respectively, at the anodic and cathodic interfaces in fixed beds containing the cation-selective, silica-based particles (or monolith skeleton). CP originates in the electrical field-induced coupled mass and charge transport normal to the charge-selective interfaces and has consequences for the EOF dynamics, hydrodynamic dispersion, and analyte retention in CEC. A secondary EDL with mobile counter-ionic space charge can be induced in the depleted CP zone leading to induced-charge EOF in the macroporous domains. It is characterized by a nonlinear dependence of the average EOF velocities on applied field strength and strong local velocity components tangential to the surface which enhance lateral pore-scale dispersion, thereby decreasing (axial) zone spreading. Differences in the pore space morphology of random-close sphere packings and monoliths criticially affect the intensity of CP and induced-charge EOF in these materials. CP is identified as a key phenomenon in CEC which also influences effective migration and the retention of charged analytes because the local intensity of CP inherently depends on applied field and mobile phase ionic strengths.  相似文献   

15.
This study describes the ability of on-line concentration capillary electrochromatography (CEC) coupled with UV or mass spectrometry (MS) for the determination of nine common non-steroidal anti-inflammatory drugs (NSAIDs) in water samples. A series of poly(stearyl methacrylate-divinylbenzene) (poly(SMA-DVB)) monolithic columns, which were prepared by single step in situ polymerization of divinylbenzene (DVB), stearyl methacrylate (SMA) and vinylbenzenesulfonic acid (VBSA, charged monomer), were developed as separation columns for the first time. The effects of polymerization condition of monolithic columns on analyte separations were examined, and the results indicated that separation performances were markedly improved in monolithic columns prepared with short reaction time (3 h) and low SMA:DVB ratio (40/60 ratio of SMA:DVB). Subsequently, an on-line concentration step of step-gradient elution was combined to this CEC system, and by optimizing the difference in eluent strength between the sample matrix and mobile phase, all NSAIDs detection sensitivity were improved (limit of detection (LOD) was 3.4-10 μg/L for UV, and 0.01-0.19 μg/L for MS). When compared to the best CE and LC reports on NSAIDs analyses so far, this on-line concentration CEC method provided better detection ability within shorter separation time (12 min) when either UV or MS detector was employed. This is the first report for on-line concentration CEC with MS detection applied in trace solute analyses of real samples.  相似文献   

16.
Summary.  The separation of pyrimidine derivatives by capillary electrochromatography (CEC) using either UV or mass spectrometric detection is described. For UV detection an aqueous phosphate carrier electrolyte containing acetonitrile is employed. The results are compared to the analysis of the same compounds by micellar electrokinetic chromatography in terms of selectivity, migration times, linearity, and detection limits. For the combination of CEC and mass spectrometry (MS) an inexpensive way to couple commercially available instruments is presented; the interface consists of an electrically grounded stainless steel connector (containing a stainless steel frit) serving as the electrode and coupling the CEC capillary with a fused silica transfer capillary to the MS instrument. Alternatively, a PEEK adapter combining the CEC capillary and a grounded stainless steel transfer capillary serving as the electrode is employed. To avoid the formation of hydrogen gas at the coupling piece or the transfer capillary, p-benzoquinone is added to the carrier electrolyte consisting of aqueous ammonium acetate and acetonitrile. Received July 21, 1999. Accepted July 29, 1999  相似文献   

17.
张维冰  郑政峰  张玉奎 《色谱》2005,23(5):437-440
 在毛细管电色谱中,由于溶质在输运过程中所具有的电性质,常会产生一些特殊的现象。这些现象,如离子交换毛细管电色谱中产生超高柱效峰的现象,已经不能用一般的色谱理论加以解释。基于弛豫理论所建立的基本模型,在考虑溶质在两相中皆有可能发生正、反向迁移的情况下,得到了流出曲线一阶原点矩和二阶中心矩的理论表达式,并通过对溶质在两相中电扩散速率与电泳速率、电渗流速率关系的分析结果证实:溶质在固定相表面的电扩散行为可以使其保留变弱,出峰加快;而这种电扩散导致的超常柱效峰的出现具有不稳定性,只有在多方面因素综合影响匹配的情况下才可能出现。  相似文献   

18.
Capillary Electrochromatography (CEC) offers a rapid, economical, and efficient means for resolving nonionic compounds in the reversed phase mode on octadecylsilane (ODS) columns. A CEC optimization on a Hypersil ODS capillary column was employed to identify a suitable mobile phase for the pressure-driven (reversed phase ODS) separation of the anti-inflammatory 2-phenylmethyl-1-naphthol (DUP 654), and its related substances. The proportions of mobile phase modifiers methanol, acetonitrile, and water as well as pH were employed as variables in a stacked mixture design. Comparable response surface profiles were obtained for the CEC separations at pH 4 and pH 8. However, subtle differences were evident in the quality of separations obtained in the liquid chromatographic (LC) mode when using a specially-prepared column packed with exactly the same stationary phase as used in the CEC experiments. A mapping of the response surface for separations on a commercially available Hypersil ODS LC column revealed obvious differences. The differences indicate that the transfer of ODS based separation methods between CEC and LC involves more than simply transferring the conditions from one mode to the other.  相似文献   

19.
A procedure is described for the slurry packing of 50‐μm ID fused silica capillaries with 3‐μm octadecyl silica (ODS) particles for capillary electrochromatography (CEC) and its hyphenation with electrospray ionisation mass spectrometry (ESI/MS). A homogeneous packed bed is obtained by using a slow packing process in an upward direction with a balanced density slurry solvent and MeOH as packing solvent. Special attention was paid to the in‐ and outlet frit preparation in order to avoid gas bubble formation which renders CEC‐ESI/MS problematic. Frits were made out of the packed bed itself, sintered in water, by using a perforated heating ribbon; they were not longer than 1 mm. In CEC‐UV, column efficiencies up to 300,000 plates per meter were obtained. Absence of gas bubbles was ascertained by the straightforward coupling to ESI/MS. A make‐up flow of 3 μL/min H2O/MeOH containing 0.1% HCOOH was used in the sheath flow interface. Steroids and carbamates were analysed with a 0.1% triethylamine‐acetic acid buffer (pH 8.9) containing varying amounts of acetonitrile. In CE‐ESI/MS, efficiencies dropped by ca. 20% but spectral data were excellent.  相似文献   

20.
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号