首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
TiO2由于其优异的光电性质及高的化学稳定性而受到广泛关注,并且被应用于有机污染物光降解[1]、太阳能光电转换[2]等诸多领域.由于制备方法不同,TiO2往往会呈现出不同的光电性质,尽管其晶型与粒度可能相差甚微[3].近年来研究表明,除晶型、粒度等因素外,表面原子排布在决定材料光电性质方面同样有重要贡献[4,5].本文采用表面光电压谱(SPS)及场诱导表面光电压谱(EFSPS)研究了TiO2单晶(001)面的光伏响应.  相似文献   

2.
化石能源的使用可产生大量CO2,带来严重的温室效应。光催化CO2还原生产太阳燃料技术既有望缓解温室效应,又可以将低能量密度的太阳能转化为高能量密度的化学能储存起来方便使用。高效光催化材料的开发是发展光催化技术的关键。迄今,在已开发的所有半导体光催化材料中, TiO2仍是广泛研究的明星材料。在实际使用中, TiO2的光催化效率仍受限于其极弱的可见光利用率和较高的电子-空穴复合几率。近年来,越来越多的研究表明TiO2的结构与形貌特征极大地影响其光催化效率。尤其, TiO2的外露晶面设计与晶面效应研究引起了广泛关注。由于具有较高表面能和较多表面不饱和键,起初大多数理论和实验研究认为锐钛矿TiO2(001)晶面是光催化活性晶面。后来,越来越多研究表明并非锐钛矿TiO2(001)晶面的暴露比例越高其光催化活性就越高。最近,我们发现锐钛矿TiO2(001)晶面与(101)晶面在调控光催化CO2还原性能上具有良好的协同效应。密度泛函理论计算表明,锐钛矿TiO2的(001)晶面与(101)晶面的能带结构有差异,(001)晶面的导带位置相对于(101)晶面而言较高,而(101)晶面的价带位置相对于(001)晶面而言较低。基于此我们提出,具有合适比例的锐钛矿TiO2的(001)晶面与(101)晶面的交界处可以形成最佳的表面异质结或晶面异质结。表面异质结的形成导致光生电子倾向于向(101)扩散,光生空穴倾向于向(001)扩散,从而促进光生电子-空穴分离,降低光生电子-空穴复合几率。在此工作基础上,我们直接以氮化钛为原料,氢氟酸为添加剂,通过简单的水热反应一步合成了氮自掺杂的TiO2微米片。利用X射线粉末衍射、扫描电镜、X射线光电子能谱、紫外-可见漫反射光谱、氮气吸附-脱附以及电化学阻抗谱等方法手段对所制备的光催化剂进行了基本结构与理化性质表征分析,并研究了其可见光光催化CO2还原性能。电镜照片结果表明,我们所制备的氮自掺杂锐钛矿TiO2微米片的(001)晶面与(101)晶面比例分别为65%和35%。基于我们前期研究结果, TiO2微米片的(001)晶面与(101)晶面可以形成表面异质结,具有良好的电荷分离效率,这也得到了电化学阻抗谱研究结果的证明。同时,由于N的原位掺杂,所制备的TiO2微米片具有优异的可见光捕获能力。由于可见光利用效率增强与光生电子-空穴分离效率提高这两方面的综合作用,所制备的氮自掺杂TiO2微米片具有非常好的可见光光催化CO2还原制甲醇性能,比商用P25及氮掺杂TiO2纳米粒子等参考样品的可见光光催化性能更优异。研究表明,通过原位自掺杂方法与晶面设计方法相结合,可以同时改善TiO2的可见光利用效率和光生电子-空穴分离效率,优化TiO2的可见光光催化性能,这也为后续开发新型高效光催化材料提供了新思路。  相似文献   

3.
光催化反应发生在半导体材料的表面,材料表面的原子/电子结构直接影响光催化剂的活性或选择性。因此,发展具有特定晶面的半导体光催化剂受到各国学者的普遍关注,被认为是调控光催化材料性能的有效途径之一。自2008年yang等首次合成高表面能{001}晶面占优的锐钛矿TiO2单晶以来,控制合成暴露不同晶面TiO2晶体的研究得到了迅猛的发展,已发展了多种方法合成了具有不同晶面的TiO2晶体。研究表明,选择性地暴露特定的活性晶面能够显著地提高光催化剂的活性或者改变光催化反应的选择性。但是,含有完整晶面构型的TiO2单晶样品的颗粒尺寸一般都较大,通常为几微米,因而显著增加了光生载流子传输与分离的难度,并且导致材料较小的比表面积,限制了对光催化活性的进一步提高。能否在合成含特定晶面单晶的同时增加多孔结构成为有效解决这一问题的关键。最近, Crossland等采用晶种模板法成功合成了介孔的锐钛矿TiO2单晶,并且通过光电器件研究证实了采用该思路可进一步提高材料的光电性能。金红石TiO2在光催化全分解水方面具有独特的优势,然而关于多孔单晶金红石TiO2的研究相对较少,尤其是合成热力学不稳定的高表面能{111}晶面完全暴露的多孔金红石单晶面临较大的技术挑战因而一直未见文献报道。本文利用晶种模板法,以TiCl4溶液为含Ti前驱体、NaF为形貌控制剂、采用水热处理制备出不同比例{111}晶面的介孔金红石单晶。我们前期工作表明, NaF可作为形貌控制剂合成低表面能{110)晶面占优的介孔金红石单晶。本文发现,通过改变NaF的添加量,可有效调变{111}/{110}晶面比例,最终合成完全暴露{111}高表面能的介孔金红石TiO2单晶。扫描电镜结果显示,当添加20 mg NaF时,合成{110}占优的具有高长径比的介孔晶体;当NaF用量增加到40 mg时{110}晶面进一步缩短;至80 mg时则制备出{111})高能面完全暴露的金红石TiO2晶体。值得注意的是,对比研究表明,不采用模板合成了与多孔晶体完全相对应的不同{111}/(110}晶面比例的实心金红石晶体。透射电镜及选区电子衍射以及结合X射线衍射进一步证实,多孔的金红石TiO2晶体与实心金红石单晶均都为单晶结构,孔结构贯穿于样品内部且具有较高的晶面结晶性。氮气吸附实验发现,虽然三个不同晶面比例介孔金红石单晶样品间的形貌具有显著的差异,但比表面积非常相近(分别为24,25,28 m2/g),孔径也都为50 nm左右,该值与所用SiO2模板球的直径以及TEM观察结果相一致。光催化产氢性能结果表明,选择性的暴露活性晶面显著提高了光催化活性,仅含高能面{111}的介孔金红石单晶样品具有最高的产氢速率(约800μmol h–1 g–1),比常规{110}晶面占优的介孔单晶样品速率提高了约一倍。尤其比实心单晶样品的产氢速率提高了至少一个数量级,这应归结于介孔结构特性所导致的表面反应活性位增加、电子传输距离缩短以及光吸收增强协同作用的结果。  相似文献   

4.
TiO2作为一种宽禁带(3.0~3.2 eV)半导体材料,由于具有优异的物理化学特性和独特的光电特性,在许多领域都展现出广泛的应用前景[1~3].材料的尺寸、结构和形貌能赋予材料一些特殊的性质,近年来人们致力于研究不同形貌的TiO2纳米材料,如TiO2纳米线和纳米管等[4],并将其应用在光催化[5]、太阳能电池[6]和锂离子电池[7]等领域,但关于其在紫外探测器上应用的报道很少[8~10].本文采用水热法在F∶SnO2(FTO)衬底上制备出纵向有序生长的金红石型TiO2纳米线阵列,通过光刻工艺和磁控溅射技术制备了背入射Au/TiO2/Au肖特基结紫外探测器,并测试了其光、暗电流,光响应度及量  相似文献   

5.
探求全氟羧酸(Perfluorinated Carboxylic Acids,PFCAs)的降解方法及其降解机理是当前亟待解决的问题.基于密度泛函理论的Materials Studio(MS)程序包中的CASTEP计算程序,优化了锐钛矿TiO2(101),(001),(110),(210);金红石TiO2(110),(001),(101),(210)和板钛矿TiO2(210),(101),(001),(110)晶面的几何结构,结果发现锐钛矿(101)晶面、金红石(110)晶面和板钛矿(210)晶面的能量最低,为最稳定的吸附面.对在最稳定三种TiO2吸附面上吸附三氟乙酸(Trifluoroacetic Acid,TFA)的18种吸附方式优化结构的吸附能计算表明,TFA被垂直吸附在板钛矿型TiO2(210)表面且羧基端H被Ti原子吸附的吸附方式吸附能最大,吸附结构最稳定,为TFA在TiO2表面吸附的最佳方式.分态密度计算表明,板钛矿(210)面与TFA间存在弱的共价相互作用,吸附后其表面结构的带隙因TFA中的O和F的2p轨道进入,带隙由吸附前的3.06 eV降低到吸附后的2.80 eV,光催化吸收波长由吸附前的385 nm增加到吸附后的443 nm,提高了可见光的吸收效率.  相似文献   

6.
利用瞬态光电压技术对光生电荷在纳米TiO2 薄膜电极中的传输机理进行了研究. 结果表明光生电荷在纳米TiO2薄膜的体相和TiO2/ITO界面分别以扩散和漂移进行分离传输的. 并且对光生电子在TiO2/ITO界面的俘获对光电压响应产生显著的影响. 这是由于在TiO2/ITO界面存在界面势垒,且带弯是从TiO2指向ITO向下弯曲. 同时也表明瞬态光电压是一种很好的表征光电功能材料的光电性质的方法.  相似文献   

7.
光催化反应发生在半导体材料的表面,材料表面的原子/电子结构直接影响光催化剂的活性或选择性.因此,发展具有特定晶面的半导体光催化剂受到各国学者的普遍关注,被认为是调控光催化材料性能的有效途径之一.自2008年yang等首次合成高表面能{001}晶面占优的锐钛矿Ti O2单晶以来,控制合成暴露不同晶面Ti O2晶体的研究得到了迅猛的发展,已发展了多种方法合成了具有不同晶面的Ti O2晶体.研究表明,选择性地暴露特定的活性晶面能够显著地提高光催化剂的活性或者改变光催化反应的选择性.但是,含有完整晶面构型的Ti O2单晶样品的颗粒尺寸一般都较大,通常为几微米,因而显著增加了光生载流子传输与分离的难度,并且导致材料较小的比表面积,限制了对光催化活性的进一步提高.能否在合成含特定晶面单晶的同时增加多孔结构成为有效解决这一问题的关键.最近,Crossland等采用晶种模板法成功合成了介孔的锐钛矿Ti O2单晶,并且通过光电器件研究证实了采用该思路可进一步提高材料的光电性能.金红石Ti O2在光催化全分解水方面具有独特的优势,然而关于多孔单晶金红石Ti O2的研究相对较少,尤其是合成热力学不稳定的高表面能{111}晶面完全暴露的多孔金红石单晶面临较大的技术挑战因而一直未见文献报道.本文利用晶种模板法,以Ti Cl4溶液为含Ti前驱体、Na F为形貌控制剂、采用水热处理制备出不同比例{111}晶面的介孔金红石单晶.我们前期工作表明,Na F可作为形貌控制剂合成低表面能{110)晶面占优的介孔金红石单晶.本文发现,通过改变Na F的添加量,可有效调变{111}/{110}晶面比例,最终合成完全暴露{111}高表面能的介孔金红石Ti O2单晶.扫描电镜结果显示,当添加20 mg NaF时,合成{110}占优的具有高长径比的介孔晶体;当Na F用量增加到40 mg时{110}晶面进一步缩短;至80 mg时则制备出{111})高能面完全暴露的金红石Ti O2晶体.值得注意的是,对比研究表明,不采用模板合成了与多孔晶体完全相对应的不同{111}/(110}晶面比例的实心金红石晶体.透射电镜及选区电子衍射以及结合X射线衍射进一步证实,多孔的金红石Ti O2晶体与实心金红石单晶均都为单晶结构,孔结构贯穿于样品内部且具有较高的晶面结晶性.氮气吸附实验发现,虽然三个不同晶面比例介孔金红石单晶样品间的形貌具有显著的差异,但比表面积非常相近(分别为24,25,28 m2/g),孔径也都为50 nm左右,该值与所用SiO 2模板球的直径以及TEM观察结果相一致.光催化产氢性能结果表明,选择性的暴露活性晶面显著提高了光催化活性,仅含高能面{111}的介孔金红石单晶样品具有最高的产氢速率(约800μmol h–1 g–1),比常规{110}晶面占优的介孔单晶样品速率提高了约一倍.尤其比实心单晶样品的产氢速率提高了至少一个数量级,这应归结于介孔结构特性所导致的表面反应活性位增加、电子传输距离缩短以及光吸收增强协同作用的结果.  相似文献   

8.
采用密度泛函理论系统研究了CePO4三个低指数晶面的几何结构、原子弛豫和表面能。通过观察表面结构以及比较表面能大小得出最优晶面。结果表明:表面原子均存在不同程度的弛豫,表面原子弛豫程度导致表面能的差异。表面能的大小顺序为(010)<(100)<(001),(010)晶面是CePO4晶体稳定表面。稳定表面几何结构表明,终止末端暴露原子为O原子。使用Wulff结构计算的平衡形态表明(001)晶面、(010)晶面和(100)晶面面积分别占总晶体形状面积的14%,45%和41%。低能表面在Wulff结构中起主导作用,表面能越低的晶面面积占比越大。稳定的CePO4晶面存在不饱和键,有利于气体分子的吸附。这项工作对CePO4在其他方面的密度泛函理论(DFT)研究具有指导性意义,并将为CePO4基催化剂上的吸附和解离提供稳定表面。  相似文献   

9.
纳米TiO_2催化剂微晶结构对光催化反应的影响   总被引:21,自引:2,他引:19       下载免费PDF全文
采用正交试验方法,调控Ti(SO4)2原料浓度、沉淀剂NH4HCO3浓度、沉淀pH值、焙烧温度和焙烧时间等制备条件制备得到了25个锐钛矿相TiO2光催化剂.对TiO2光催化降解十二烷基苯磺酸钠(SDBS)的催化活性与TiO2锐钛矿相10个晶面的法向粒子尺寸、晶格畸变应力、X射线衍射强度之间的关系进行了分析.发现TiO2光催化SDBS的降解遵循一级反应动力学;其主要影响因素为(101)晶面结晶情况,而与其余晶面的相关性不大;光催化反应需要晶格畸变较少的结晶较完整的(101)晶面;晶粒尺寸减小,比表面积增大有利于提高反应速率;光催化反应过程主要在结晶的锐钛矿相(101)晶面表面上发生,而无定形TiO2催化活性较低.  相似文献   

10.
化石能源的使用可产生大量CO2,带来严重的温室效应.光催化CO2还原生产太阳燃料技术既有望缓解温室效应,又可以将低能量密度的太阳能转化为高能量密度的化学能储存起来方便使用.高效光催化材料的开发是发展光催化技术的关键.迄今,在已开发的所有半导体光催化材料中,Ti O2仍是广泛研究的明星材料.在实际使用中,Ti O2的光催化效率仍受限于其极弱的可见光利用率和较高的电子-空穴复合几率.近年来,越来越多的研究表明Ti O2的结构与形貌特征极大地影响其光催化效率.尤其,Ti O2的外露晶面设计与晶面效应研究引起了广泛关注.由于具有较高表面能和较多表面不饱和键,起初大多数理论和实验研究认为锐钛矿Ti O2(001)晶面是光催化活性晶面.后来,越来越多研究表明并非锐钛矿Ti O2(001)晶面的暴露比例越高其光催化活性就越高.最近,我们发现锐钛矿Ti O2(001)晶面与(101)晶面在调控光催化CO2还原性能上具有良好的协同效应.密度泛函理论计算表明,锐钛矿Ti O2的(001)晶面与(101)晶面的能带结构有差异,(001)晶面的导带位置相对于(101)晶面而言较高,而(101)晶面的价带位置相对于(001)晶面而言较低.基于此我们提出,具有合适比例的锐钛矿Ti O2的(001)晶面与(101)晶面的交界处可以形成最佳的表面异质结或晶面异质结.表面异质结的形成导致光生电子倾向于向(101)扩散,光生空穴倾向于向(001)扩散,从而促进光生电子-空穴分离,降低光生电子-空穴复合几率.在此工作基础上,我们直接以氮化钛为原料,氢氟酸为添加剂,通过简单的水热反应一步合成了氮自掺杂的Ti O2微米片.利用X射线粉末衍射、扫描电镜、X射线光电子能谱、紫外-可见漫反射光谱、氮气吸附-脱附以及电化学阻抗谱等方法手段对所制备的光催化剂进行了基本结构与理化性质表征分析,并研究了其可见光光催化CO2还原性能.电镜照片结果表明,我们所制备的氮自掺杂锐钛矿Ti O2微米片的(001)晶面与(101)晶面比例分别为65%和35%.基于我们前期研究结果,Ti O2微米片的(001)晶面与(101)晶面可以形成表面异质结,具有良好的电荷分离效率,这也得到了电化学阻抗谱研究结果的证明.同时,由于N的原位掺杂,所制备的Ti O2微米片具有优异的可见光捕获能力.由于可见光利用效率增强与光生电子-空穴分离效率提高这两方面的综合作用,所制备的氮自掺杂Ti O2微米片具有非常好的可见光光催化CO2还原制甲醇性能,比商用P25及氮掺杂Ti O2纳米粒子等参考样品的可见光光催化性能更优异.研究表明,通过原位自掺杂方法与晶面设计方法相结合,可以同时改善Ti O2的可见光利用效率和光生电子-空穴分离效率,优化Ti O2的可见光光催化性能,这也为后续开发新型高效光催化材料提供了新思路.  相似文献   

11.
半导体TiO2作为光催化剂,已被广泛应用于光催化废水处理及光催化储能[1,2]等方面的研究.人们不断开发高活性的新型光催化剂并对其反应机理进行了探索性研究[3],希望通过表面负载Pd、Ru、Pt或Rh等贵金属的小岛式颗粒以传递光生电子(或光生空穴).  相似文献   

12.
TiO2纳米带表面光伏特性的研究   总被引:1,自引:0,他引:1  
近年来, 一维结构的纳米带由于其不同于管、线材料的新颖结构以及独特的光电性能而受到广泛关注. 人们通过各种方法合成了氧化锌、硫化镉和氧化锡等纳米带材料[1,2]. 纳米TiO2以其优异的光电性能和高的化学稳定性而被广泛应用于太阳能电池、光催化降解等诸多领域[3], 从而成为研究热点, 最近其纳米带的制备也有报道[4].  相似文献   

13.
四甲基-四乙基钯卟啉的表面光伏特性研究   总被引:5,自引:1,他引:4  
合成了1,3,5,7-四甲基-2,4,6,8-四乙基卟啉(TMTEP)及其钯络合物(PdTMTEP),并利用表面光电压谱(SPS)和场诱导表面光电压谱(FISPS)技术对它们的表面光伏特性进行了研究.TMTEP有较强的荧光发射,而PdTMTEP以磷光辐射为主,其光伏响应强度比TMTEP的强得多;在外电场诱导下,PdTMTEP的Soret带与Q带的光伏响应强度随外加正电场光伏响应强度的增加而增强,随外加负电场光伏响应强度的增加而减弱,并且在680,750nm处出现两个新的光伏响应带,这两个光伏响应带与极化子跃迁有关.  相似文献   

14.
利用溶胶-凝胶法制备二氧化钛纳米晶粉末. 结合光声和表面光伏技术对样品表面态性质和光诱导电荷输运特性进行研究. 结果表明, 纳米晶TiO2样品在波长为380 nm 处出现的表面光伏响应与锐钛矿型TiO2的表面电子结构有关, 属于带鄄带电荷转移跃迁;随着样品粒径的减小, 在2.38 eV 能级处形成一个具有明显受体特征的表面电子态; 依据样品光声效应和表面光伏效应之间的能量互补关系发现, 尽管随着样品平均粒径的减小无辐射跃迁产生的光声信号增强, 但是适当提高样品中金红石的相对含量, 可以显著减少样品表面无辐射跃迁的成分, 提高光量子效率.  相似文献   

15.
利用表面光电压谱(SPS)和瞬态光伏(TRP)技术研究了纳米ZnO的光生电荷行为, 发现TRP曲线时域为10-9~10-7和10-6~10-3 s时样品的SPS在320~380 nm处出现光伏响应, 时域为10-3~10-1 s时样品的SPS在380~420 nm处出现光伏响应. 这3个时域分别对应着纳米晶本征响应、 晶间电荷转移和纳米晶表面态电荷捕获等过程. 光生电荷密度足够大或受外部电场影响时在300~320 nm区间也出现光伏响应.  相似文献   

16.
采用离子束溅射技术制备出TiO2/ITO、Zn2+掺杂的TiO2(TiO2-Zn)/ITO和TiO2/ZnO/ITO薄膜,采用表面敏化技术和旋转涂膜法,制备出(1,10-邻菲咯啉)2-2-(2-吡啶基)苯咪唑钌混配配合物(Rup2P)表面敏化的TiO2基复合薄膜Rup2P/TiO2/ITO、Rup2P/TiO2-Zn/ITO和Rup2P/TiO2/ZnO/ITO.表面光电压谱(SPS)结果发现:敏化后的TiO2基薄膜在可见区(400-600nm)产生SPS响应;TiO2基薄膜的能带结构不同,其在400-600nm和350nm处的SPS响应的峰高比不同.利用电场诱导表面光电压谱(EFISPS),测定TiO2基薄膜和表面敏化TiO2基复合薄膜各种物理参数,并确定其能带结构.分析可知,表面敏化TiO2基复合薄膜在400-600nm的SPS响应峰主要源于Rup2P分子的中心离子Ru4d能级到配体1,10-邻菲咯啉π*1和2-(2-吡啶基)苯咪唑π*2能级的跃迁;TiO2中Zn2+掺杂能级有利于Ru4d能级到配体π*1和π*2跃迁的光生电子向TiO2-Zn导带的注入;TiO2/ZnO异质结构有利于光生电子向ITO表面的转移,从而导致可见光(400-600nm)SPS响应增强以及光电转换效率的提高.  相似文献   

17.
本文利用表面光电压谱(Surface Photovohage spectroscopy,简称SPS)研究了ZnTPP对TiO_2粉末的光谱敏化,发现用ZnTPP修饰后的TiO_2(金红石和锐钛矿)粉末在可见区420、550和590nm附近有三个光伏响应带,它们分别对应于ZnTPP的Soret、Q(1,0)和Q(0,0)带。经过严格的实验和分析,证明这三个带是由ZnTPP对TiO_2的敏化光电压引起的,而不是ZnTPP自身的光伏响应。在敏化效果上,亚稳的锐钛矿优于金红石。同时,我们对这种光敏表面的光诱导电荷转移机制和SPS作为一种研究光谱敏化方法的可行性进行了讨论。  相似文献   

18.
由于MnPc具有特殊的电子结构和氧化还原性质,已被作为生物模拟体系进行过深入的研究,并认为它与植物光合作用中的电荷转移及放氧有着直接的关系。人们还发现电子受主型气体对CuPc等体系的表面电导有重要影响,原因是它们之间存在着强烈的电荷转移相互作用,并成功地制成了基于表面电导测量的NO_2气体传感器。既然MnPc表现出较好的表面光伏性质,那么可以预料这种性质也有可能对电子受主型气体的表面吸附是敏感的,这方面的研究不仅有可能反映出它们之间的电荷转移相互作用情况,还能为基于表面光电压测量的气体传感研究积累第一手资料。  相似文献   

19.
表面与界面电荷性质是纳米材料制备及其应用中应该考虑的重要问题. 详细了解纳米材料的尺寸与表面电荷性质之间的关系是纳米科学研究中的重要课题. TiO2作为一种宽带隙的半导体材料, 因其具有显著的光电响应、良好的化学稳定性和绿色环保性, 在太阳能转换、光催化杀菌及污染处理等方面有着广泛的用途[1~5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号