首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To prepare a crosslinked hybrid polymer electrolyte membrane (PEM) with high chemical stability, a silane monomer, namely p‐styryltrimethoxysilane (StSi), was first grafted to poly(ethylene‐co‐tetrafluoroethylene) (ETFE) film by γ‐ray preirradiation. Hydrolysis‐condensation and sulfonation were then performed on the StSi‐grafted ETFE (StSi‐g‐ETFE) films to give them crosslinks and proton conductibility, respectively. Thus, a crosslinked proton‐conducting hybrid PEM was obtained. The crosslinks introduced by the silane‐condensation have an inorganic ? Si? O? Si? structure, which enhance the chemical and thermal stabilities of the PEM. The effect of the timing of the hydrolysis‐condensation (before or after sulfonation) and the sulfonation method (by chlorosulfonic acid or H2SO4) on the properties of the resulting hybrid PEMs such as ion‐exchange capacity, proton conductivity, water uptake, chemical stability, and methanol permeability were investigated to confirm their applicability in fuel cells. We conclude that the properties of the new crosslinked hybrid StSi‐grafted PEMs are superior to divinylbenzene (DVB)‐crosslinked styrene‐grafted membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5559–5567, 2008  相似文献   

2.
UV‐induced thiol‐ene crosslinked films composed of linear methacrylate copolymers having pendant enes (MCPenes) are reported. An approach involving a combination of controlled radical polymerization to synthesize well‐controlled pendant hydroxyl containing copolymers (MCPOHs) with the following facile carbodiimide coupling of the formed MCPOHs with enes allows for the synthesis of well‐controlled MCPenes with narrow molecular weight distribution. The density of the pendant enes in MCPenes are easily modulated by varying monomer ratios in the feed. Under UV irradiation, the resulting MCPenes undergo thiol‐ene polyaddition reactions with polythiols to form crosslinked films with a uniform network. The results from thermal and mechanical analysis suggest these properties are tuned by adjusting the densities of pendant enes in MCPenes and the amount of thiols in the reactive mixtures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 572–581  相似文献   

3.
The hydrophobic solid surface modification with fluorine‐containing monomers has received tremendous attention because of its unique structure and excellent property. However, these hydrophobic films normally suffer from two major problems: one is weak interface interaction between fluoropolymers and substrates, and the other is the high cost of fluorine‐containing monomers. Herein, with the aim of feasible industrial application, a facile in situ UV photo‐grafting method is reported, which could ensure the formation of chemical bonds between fluoropolymer‐grafted layer and substrate with a low cost commercial 2,2,2‐trifluoroethyl methacrylate (TFEMA) as monomer. With low‐density polyethylene (LDPE) film as a model substrate, four kinds of poly‐TFEMA‐grafted layer are fabricated on LDPE films with different surface morphologies: polymer brush, polymer network, crosslinked nanoparticles, and a micro‐ and nanoscale hierarchical structure. The experimental results showed that the water contact angles (CAs) of the LDPE films grafted with polymer brush, polymer network, and crosslinked nanoparticles were (103 ± 2)°, (95 ± 2)°, and (122 ± 2)°, respectively, which were much higher than that of LDPE film. The introduction of micro‐ and nanoscale hierarchical structures can dramatically improve the surface roughness, which will further enhance the film hydrophobicity, and the water CA can reach as high as (140 ± 1)°. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1059–1067  相似文献   

4.
Thiol‐ene radical addition by photolysis is a highly efficient click reaction of sufhydryl groups with reactive enes that has been extensively explored as a promising means to construct multifunctional materials. Here, photo‐induced thiol‐ene crosslinked films composed of linear methacrylate copolymer polythiols (MCPsh) are reported. Well‐defined MCPsh copolymers were prepared by thiol‐responsive cleavage of pendant disulfide linkages positioned in the corresponding methacrylate copolymers with narrow molecular weight distribution which were synthesized by a controlled radical polymerization method. With a commercially available multifunctional acrylate as a model ene, photo‐induced thiol‐ene radical polyaddition of these polythiols is competitive to free‐radical homopolymerization of acrylates, yielding crosslinked films exhibiting rapid cure, uniform network, and enhanced mechanical properties; these properties are required for high performance coating materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2860–2868.  相似文献   

5.
Random copolymers of styrene, p‐azidomethylstyrene and 1H,1H,2H,2H‐perfluorodecyl methacrylate were prepared in two steps involving nitroxide‐mediated radical copolymerization and azidation reaction and further characterized by 1H and 19F NMR, size exclusion chromatography, differential scanning calorimetry, and thermal gravimetric analysis. Ultrathin films of these azidomethyl‐functionalized fluorinated random copolymers, with thicknesses ranging from 20 to 100 nm, were spin coated onto Si substrates and then crosslinked by ultraviolet irradiation resulting in smooth and insoluble crosslinked fluorinated polymer mats. The surface properties of the supported thin films were investigated by X‐ray photoelectron spectroscopy and water contact angle measurements. These tailored photo‐crosslinked coatings afford a versatile control and homogenization of the wetting properties of different organic and inorganic substrates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3888–3895, 2010  相似文献   

6.
Photo‐induced thiol‐ene crosslinked polymeric networks have been extensively explored in constructing a variety of new materials with enhanced mechanical properties for optical, biomedical, and sensing applications. Toward the broad applications, however, tunable mechanical properties are greatly desired. Here, an effective approach utilizing high‐molecular‐weight methacrylate copolymers having pendant thiol and vinyl groups (MCPsh and MCPenes) to modulate thermal and mechanical properties of photo‐induced thiol‐ene crosslinked materials is reported. The MCP copolymers are synthesized by an industrially friendly polymerization method, followed by post‐modification including either a facile coupling reaction or reductive cleavage. Upon UV irradiation, thiol‐ene reactive blends of MCPsh and MCPenes yield highly crosslinked materials through the formation of flexible sulfide linkages. These polysulfide‐crosslinked materials based on rigid MCP backbones exhibit enhanced mechanical properties. Further, their thermal and mechanical properties are tuned by modulating monomer compositions of MCPs as well as varying numbers of pendant SH or vinyl groups (i.e., extent of crosslinking densities). This approach is versatile and effective for development of high performance polymeric materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3060–3068  相似文献   

7.
Several crosslinkable oxetane‐functionalized copolymers, containing regio‐regular segments of 3‐hexylthiophene, are synthesized using the Grignard metathesis polymerization. The optical and electrochemical properties of the new polymers, both in the soluble and crosslinked forms, are reported. These polymers are used in the preparation of organic photovoltaics upon blending with PCBM as electron‐acceptor. The effect of the crosslinking of these copolymers, once the blend films are formed, on the devices performance is also studied. In particular, the insertion of the oxetane‐functionalized thiophene comonomers leads to a decrease of the devices performance, which is further decreased upon crosslinking of the copolymer. However, the stability of the devices overall improves upon crosslinking of the copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 652–663  相似文献   

8.
Water‐swellable biodegradable materials exhibiting mechanically tenacious and tough characters in the wet state were prepared by a simple blend of two enantiomeric polylactide‐grafted dextran copolymers (Dex‐g‐PLLA and Dex‐g‐PDLA). DSC and WAXD analyses demonstrated the formation of SC crystals in the copolymer blend films. SC blend films showed lamellar‐type microphase‐separated structures. When swollen with water, these blend films showed the same level of tensile strengths and Young's modulus as the films in the dry state. SC blend films degraded gradually over a month under physiological conditions with a degradation rate faster than the corresponding Dex‐g‐PLLA films. The SC‐forming enantiomeric mixture of polylactide‐grafted polysaccharides should be a good candidate for an implantable biocompatible material exhibiting favorable mechanical properties and degradation behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Polylactide (PLA)‐grafted dextran was synthesized with a trimethylsilyl protection method to produce novel biodegradable, biomedical materials. PLA‐grafted dextrans with various lengths and numbers of graft chains were synthesized. The properties of solution‐cast films prepared from PLA‐grafted dextrans were investigated with thermal and dynamic mechanical analyses. The graft‐copolymer films exhibited lower glass‐transition temperatures, melting temperatures (Tm's), and crystallinities as well as higher viscosity properties as compared with poly‐L ‐lactide film. The Tm and crystallinity and mechanical properties at 37 °C could be adjusted by controlling the molecular structure such as the lengths and numbers of graft chains. Furthermore, the biodegradability of PLA‐grafted dextran films was investigated through the weight change of film and the molecular weight change of polymer during the in vitro degradation test. PLA‐grafted dextrans exhibited different degradation behavior from poly‐L ‐lactide with the introduction of a polysaccharide segment and branched structure as well as the change of end‐functional group. The degradation rate of PLA‐grafted dextran and the cast film prepared from PLA‐grafted dextran could be adjusted by controlling the sugar content or the length of graft chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2462–2468, 2003  相似文献   

10.
Polymer thin films are widely used as coatings and interlevel dielectrics in microelectronic applications. In thin‐film structures, stresses are generated due to interaction with adjacent layers and film shrinkage due to solvent evaporation or curing. This causes polymer chain orientation resulting in anisotropic (direction dependent) film properties. The dual capacitor technique has been developed to measure in situ, the through‐plane (z) stress‐strain behavior of thin polymer films. A parallel plate capacitor device and an interdigitated electrode structure were used as sensors to detect changes in dielectric permittivity and thickness of thin polymer films under compression. The analytical and finite element models used to interpret the capacitance measurements have been presented. The Clausius–Mossotti equation was used to determine the volume change in the film from the permittivity measurements. Results have been reported for 10–14 μm thick, Cyclotene 4026‐46 benzocyclobutene films and 10–12 μm thick films of polyimide PI‐2611. The Cyclotene 4026‐46 films were found to be mechanically isotropic, whereas the PI‐2611 films were highly anisotropic. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1634–1644, 2000  相似文献   

11.
Novel low‐band gap alternating copolymers consisting of 9,9‐bis(2‐ethylhexyl)fluorene and 4,6‐di(2‐thienyl)thieno[3,4‐c][1,2,5]thiadiazole and its 3,3″‐dialkyl derivatives were synthesized by Suzuki copolymerization reaction, and their photophysical and electrochemical properties were studied. The copolymers possess small optical band gap 1.3–1.4 eV. The absorption covers the whole visible spectral region. The long‐wavelength absorption maxima in thin films located at approximately 750–785 nm are significantly red shifted compared with those in solution, indicating strong intermolecular interactions. The introduction of alkyl chains to the thiophene units increases the molecular weights of soluble fractions and solubility of the final copolymers, leading to the improved processability of thin films. Polymer solutions exhibited solvatochromism and thermochromism, which is strongly supported by the involvement of the alkyl chains. The copolymers exhibited ambipolar redox properties and reversible electrochromic behavior. The electronic properties are influenced only slightly by alkyl substituents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2743–2756, 2010  相似文献   

12.
Novel semi‐interpenetrating polymer networks (SIPNs) based on segmented polyurethane‐urea and poly(N‐isopropylacrylamide‐co‐acrylic acid‐co‐butylmethacrylate) (poly(NIPAM‐co‐AA‐BMA)) were synthesized for the fabrication of silver nanoparticles (AgNPs) in the SIPN system that could be useful for wound dressing applications. The obtained SIPN films, after neutralization, showed high swelling in aqueous environments and good mechanical properties in both dry and hydrated states. Analysis of the dried SIPN films by differential scanning calorimetry and dynamic viscoelastic measurements revealed the presence of crosslinked copolymers as well as homopolymers in the SIPN system. The neutralized swollen SIPN film coordinated with the silver ions (Ag+) that were incorporated into it. AgNPs were subsequently formed by the reduction of Ag+. The formation of AgNPs was characterized by UV‐visible spectroscopy, atomic force microscopy, wide‐angle X‐ray diffraction, and thermogravimetric analysis (TGA). Bactericidal activity tests revealed a distinct zone of microbial inhibition within and around the silver‐doped SIPN films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4950–4962, 2009  相似文献   

13.
New chiral binaphthyl‐containing polyfluorene (PF) derivatives, PFOH , PFMOM , and PFP , bearing different binaphthyl units ((S)‐2,2′‐bis(methoxymethoxy)‐1,1′‐binaphthyl for PFMOM , (S)‐1,1′‐binaphthyl‐2,2′‐diol for PFOH , and (S)‐2,2′‐bis(diphenylphosphinyl)‐1,1′‐binaphthyl for PFP ) in the backbone have been designed and synthesized through Pd‐catalyzed Suzuki polycondensation. Their properties have been investigated in detail by 1H NMR, 13C NMR, TGA, DSC, UV–vis, photoluminescence (in solutions, in thin films before and after annealing), and circular dichroism (CD) spectroscopic methods compared with poly(9,9‐dihexylfluorene‐2,7‐diyl) ( PF ). The resulting copolymers possessed excellent solubility in organic solvents and emitted strong blue light. The phosphine oxide‐containing copolymers PFP and PFMOM exhibited higher quantum yields and better thermal spectral stability in comparison with PF . All the copolymers exhibited obviously the linearly polarized photoluminescent properties both in solutions and in solid states. High emission polarization ratios (RPL) of PFP were observed with no obvious decrease upon thermal annealing. In addition, investigation of the CD spectroscopic properties of these copolymers in THF solutions indicated that the chirality of the binaphthyls could be transferred to the whole PF backbone. All these results demonstrated that introduction of the chiral binaphthyls, particularly BINAPO, into the backbone could effectively improve the performances of the copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Imprinted polymers were synthesized using the surface‐grafting technique with [Co(III) 1 (vpy)(dmap)]PF6 { 1 , bis[2‐hydroxy‐4‐(4‐vinylbenzyloxy)benzaldehyde]ethylene‐diimine; vpy: 4‐vinylpyridine; dmap: N,N′‐dimethyl‐4‐aminopyridine} as the template. The metallated sites were probed using spectroscopic techniques including UV–vis, Fourier transform infrared, and electron paramagnetic resonance (EPR) spectroscopies to investigate the site architecture and isolation of the immobilized sites in the surface‐grafted polymers. EPR studies showed a distribution of four and five coordinated sites similar to the bulk copolymers, and the surface‐grafted polymer showed reversible binding to dioxygen in multiple cycles. Both results indicated site isolation in the surface‐grafted polymers analogous to the bulk polymers. Although the dioxygen binding in surface‐grafted polymers is reversible, the spin density decreases to 50% in the third cycle as opposed to bulk copolymers. This indicates that the sites are more heterogeneous and more exposed to the environment than the analogous sites in bulk copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 888–897, 2001  相似文献   

15.
Two new low‐bandgap alternating copolymers (CEHTF and CEHTP) consisting of 4,6‐bis(3′‐(2‐ethylhexyl)thien‐2′‐yl)thieno[3,4‐c][1,2,5] thiadiazole and 9,9‐bis(2‐ethylhexyl)fluorene or 2,5‐bis(isopentyloxy)benzene were synthesized by Suzuki coupling reaction of corresponding comonomers. Their optical, electrochemical, and photovoltaic (PV) properties were studied and are reported. Both the copolymers exhibited long‐wavelength absorption covering the whole visible spectral region, which is in CEHTP thin films extended up to near infrared region, ambipolar redox properties, and electrochromism. High‐electron affinities and low‐optical bandgap values, 1.37 and 1.15 eV, were determined for CEHTF and CEHTP, respectively. PV devices with bulk heterojunction made of blends of copolymers and fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester ([60]PCBM) were prepared and characterized. Effects of intramolecular charge transfer strength and side‐chain nature and length on photophysical properties are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Two series of novel random polyfluorene copolymers containing quinoxaline units were prepared by stressing the coupling according to Yamamoto. The first series contains 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)benzo[g]quinoxaline and the second series 2,3‐bis‐(4′‐tert‐butyl‐biphenyl‐4‐yl)quinoxaline as energy accepting unit. The copolymers were identified by gel permeation chromatography, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Thermal properties were analyzed by thermal gravimetric analysis and differential scanning calorimetry revealing amorphous copolymers that are stable up to 430 °C. The morphology was investigated using atomic force microscopy. The optical properties in solutions and thin films were analyzed. Furthermore, the thin film electro‐optical properties were determined in monolayer polymer light‐emitting devices. Single layer devices were built with efficiencies ranging from 0.15 to 2.0 cd/A. For the random copolymers with 5 mol % benzo[g]quinoxazoline in the polyfluorene backbone some threefold efficiency enhancement from 1.1 to 3.0 cd/A was achieved by utilizing an ultra thin interlayer of poly(9,9‐di‐n‐octylfluorene‐2,7‐diyl)‐alt‐[1,4‐phenylene‐(4‐sec‐butylphenylimino)‐1,4‐phenylene] between PEDOT:PSS and the emissive random copolymer layer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4773–4785, 2007  相似文献   

17.
The synthesis of ABA triblock copolymers is described, in which the A blocks are poly(benzyl ether) dendrons and the B block is polycyclooctene or polyethylene. Bis‐dendritic cis‐olefins were synthesized and used as chain transfer agents in ring‐opening metathesis polymerization of cyclooctene in a process that inserts the dendrons at the polymer chain‐ends. Evaluation of the polymer products by spectroscopic, chromatographic, and titration methods supports their triblock structure. Hydrogenation of the unsaturated polycyclooctene B‐block of these ABA triblock copolymers provides the first reported synthesis of bisdendritic polyethylene. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5429–5439, 2005  相似文献   

18.
Conjugated block copolymers are potentially useful for organic electronic applications and the study of interfacial charge and energy transfer processes; yet few synthetic methods are available to prepare polymers with well‐defined conjugated blocks. Here, we report the synthesis and thin film morphology of a series of conjugated poly(3‐hexylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3HT‐b‐PF) and poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF) block copolymers prepared by functional external initiators and click chemistry. Functional group control is quantified by proton nuclear magnetic resonance spectroscopy, size‐exclusion chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The thin film morphology of the resulting all‐conjugated block copolymers is analyzed by a combination of grazing‐incidence X‐ray scattering, atomic force microscopy, and transmission electron microscopy. Crystallization of the P3HT or P3DDT blocks is present in thin films for all materials studied, and P3DDT‐b‐PF films exhibit significant PF/P3DDT co‐crystallization. Processing conditions are found to impact thin film crystallinity and orientation of the π–π stacking direction of polymer crystallites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 154–163  相似文献   

19.
A facile synthetic strategy for preparing hydroxylated polymethacrylate amphiphilic block copolymers (PCzMMA‐b‐PBMMA, PFlMMA‐b‐PBMMA) incorporated with primary and secondary hydroxyl groups and electroactive moieties along the polymer backbone is reported. Full characterization, structure‐property relationship and self‐assembly of these polymers are discussed. Due to interplay of hydrophobic/hydrophilic interactions, PCzMMA‐b‐PBMMA formed a layered lattice and PFlMMA‐b‐PBMMA showed a vesicular morphology. Electropolymerization of the electroactive units led to the formation of cross‐conjugated polymer network in solution and in thin films. The network structure was characterized with a range of spectroscopic techniques. Such highly processable polymers may be of interest to applications in which a conducting amphiphilic films with strong adhesion to various substrates are required. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2217–2227  相似文献   

20.
The modification of polyethylene by the grafting of poly(acrylic acid) onto the surface of one of the faces of low‐density polyethylene films with UV radiation is reported. The transport of oxygen, nitrogen, carbon monoxide, carbon dioxide, methane, ethane, ethylene, propane, and argon across surface‐modified films containing 3.7% poly(acrylic acid) has been investigated at several temperatures. The layer of poly(acrylic acid) grafted onto the surface of one of the faces of the films reduces the permeability coefficient of the gases by a factor of about 1/6. The sharp drop in the gas permeability as a result of the poly(acrylic acid) layer may arise either from the formation of ordered structures of the grafted chains or from the development of highly crosslinked structures. The values of the polymer–gas enthalpic interaction parameter for the modified film are higher than those for the unmodified one. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2828–2840, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号