首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(thiourethane)s having a siloxane moiety in the side chain were synthesized with a 5‐membered cyclic dithiocarbonate (DTC) having a siloxane group as a building block. The synthetic pathway consisted of (1) an addition reaction of the DTC with diamines and (2) polyaddition reactions of the resulting dithiols with diisocyanates. The siloxane moiety in the polymer side chain underwent a self‐condensation reaction upon exposure to moisture, and this led to a successful crosslinking reaction of the poly(thiourethane). The crosslinking on a silicate surface was accompanied by condensation between the siloxane side chain of the polymer and the silanol group on the surface, giving the corresponding surface that was permanently coated with the crosslinked polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6492–6502, 2005  相似文献   

2.
PDMS surfaces have been modified to confer both resistance to non-specific protein adsorption and clot lyzing properties. The properties and chemical compositions of the surfaces have been investigated using water contact angle measurements, ATR FT-IR spectroscopy, and XPS. The ability of the PEG component to suppress non-specific protein adsorption was assessed by measurement of radiolabeled fibrinogen uptake from buffer. The adsorption of plasminogen from human plasma to the various surfaces was studied. In vitro experiments demonstrated that lysine-immobilized surfaces with free epsilon-amino groups were able to dissolve fibrin clots, following exposure to plasma and tissue plasminogen activator. [Figure: see text].  相似文献   

3.
The solution properties of poly(dimethyl siloxane) (PDMS) were studied with light scattering (LS), gel permeation chromatography/light scattering (GPC/LS), and viscometry methods. PDMS samples were fractionated, and the weight‐average molecular weights, second virial coefficient, and the z‐average radius of gyration of each fraction were found according to the Zimm method with the LS technique. In this work, the molecular weight range studied was 7.5 × 104 to 8.0 × 105. Molecular weights and molecular weight distributions were determined by GPC/LS. The intrinsic viscosities of these fractions were studied in toluene at 30 °C, in methyl ethyl ketone (MEK) at 20 °C, and in bromocyclohexane (BCH) at 26 °C and 28 °C. The Mark–Houwink–Sakurada relationship showed that toluene was a good solvent, and MEK at 20 °C and BCH at 28 °C were θ solvents for PDMS. The unperturbed dimensions were calculated with LS and intrinsic viscosity data. The unperturbed dimensions, expressed in terms of the characteristic ratio, were found to be 6.66 with different extrapolation methods in toluene at 30 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2678–2686, 2000  相似文献   

4.
New measurements and literature data on polysiloxanes covering heat capacities, transition parameters, enthalpies, entropies and Gibbs energies are presented and critically reviewed. TheATHAS computation method is used to bring heat capacities into agreement with an approximate frequency spectrum. The various crystal and mesophases are discussed. TheATHAS (1990) recommended data are as follows: For poly(dimethyl siloxane) the glass transition is at 146 K with an increase in heat capacity of 29.24 J/(K mol). The completely crystalline sample melts at about 219 K with a heat of fusion of 2.75 kJ/mol. For poly(diethyl siloxane) the glass transition is at 135 K with an increase in heat capacity of 34.48 J/(K mol). The completely crystalline sample changes to a condis crystal at 206.7 K with a heat of disordering of 2.72 kJ/mol. The transition to a poorly characterized viscous crystal with thermodynamic properties close to the melt occurs at 282.7 K with an enthalpy of transition of 1.84 kJ/mol. Final fusion occurs at 308.5 K and a small endotherm of about 231 J/mol. Tables of heat capacities, enthalpies, entropies and Gibbs energies are given from 0 K to 550 K.
Zusammenfassung Neue Messungen und Literaturangaben von Polysiloxanen über Wärmekapazität, Umwandlungsparameter, Enthalpien, Entropien und Gibbssche Energien werden vorgestellt und kritisch betrachtet. Das Rechenverfahren ATHAS wurde benutzt, um die Wärmekapazitäten mit einem annähernden Frequenzspektrum in Einklang zu bringen. Es wurden die verschiedenen Kristall- und Mesophasen diskutiert. Die von ATHAS (1990) empfohlenen Werte sind wie folgt: Für Poly(dimethylsiloxan) beträgt der Glasumwandlungspunkt 146 K bei Zunahme der Wärmekapazität um 29.24 J/(K.mol). Die vollständing kristalline Probe schmilzt bei etwa 219 K mit einer Schmelzwärme von 2.75 kJ/mol. Für Poly(diethylsiloxan) beträgt der Glasumwandlungspunkt 135 K bei Zunahme der Wärmekapazität um 34.48 J/(K.mol). Die vollständig kristalline Probe wandelt sich bei 206.7 K um, die Fehlordnungswärme beträgt 2.72 kJ/mol. Die Umwandlung in einen wenig verstandenen viskosen Kristall, dessen thermodynamische Eigenschaften denen der Schmelze gleichen, erfolgt bei 282.7 K mit einer Umwandlungsenthalpie von 1.84 kJ/mol. Letztendlich verläuft das Schmelzen bei 308.5 K mit einem kleinen endothermen Effekt von etwa 231 J/mol. Wärmekapazitäten, Enthalpien, Entropien und Gibbssche Energien sind für den Bereich 0 K–550 K tabellarisch angegeben.

, , , , . ATHAS , - . . ATHAS (1990) : 146 29,24 / ·. 219 2,75 /. 135 34,48 /·. 206,7 2,72 /. « » 282,7 1,84 /. 308,5 231 /. , , 0–550 .


This work was supported by the National Science Foundation, Polymers Program, Grant #DMR 83-17097 and early work of J.P.W. was supported by the Am. Chem. Soc. Petroleum Research Found, Grant 12431-AC7. In addition at Oak Ridge National Laboratory the work was sponsored by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems Inc.  相似文献   

5.
Six silicate‐crosslinked oligodimethylsiloxane thin films were prepared by the phosphoric acid (1 mol %) catalyzed condensation of α,ω‐bis(hydroxy)oligodimethylsiloxane (P) and tetrakis(hydroxydimethylsiloxy)silane (Q). Other acid catalysts were evaluated. P and Q were prepared by the Pd‐catalyzed oxidation of the corresponding Si? H compounds with water. The starting materials were characterized by IR and 1H, 13C, and 29Si NMR. A thermal cure was achieved with H3PO4 in 24 h and with poly(phosphoric acid) in 3 h at 110–120 °C. Dynamic mechanical analysis was used to determine the glass‐transition temperatures and to evaluate the mechanical properties of the films. Their thermal stabilities (≥300 °C) in air and N2 were determined by thermogravimetric analysis. Small amounts of non‐crosslinked P were recovered from the films by Soxhlet extractions with CH2Cl2 and analyzed by IR, gel permeation chromatography, and 29Si NMR. The crosslink densities were evaluated by the CH2Cl2 absorption capacities of the films. The surface properties of the films were determined by static and dynamic contact‐angle measurements. Electrochemical impedance spectroscopy was carried out to evaluate the corrosion‐protective properties of the coatings on mild steel as a function of the exposure time to 0.5 N NaCl. The biofoul‐release properties of the films were evaluated with sporelings from mature Ulva linza plants and barnacles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2237–2247, 2006  相似文献   

6.
Stress relaxation in uniaxial extension and dynamic shear moduli G′ and G″ have been studied in networks of vinyl-terminated poly(dimethyl siloxane) (PDMS) of five different molecular weights (M n from 1800 to 29,200) crosslinked with cis-dichlorobis (diethyl sulfide) platinum (II) and containing 10 and 15 wt % of two samples of high-molecular-weight unattached linear hydroxyl-terminated PDMS (M w 700,000 and 950,000). The M w/M n ratio of both the network prepolymers and the unattached linear species was approximately 2. In stress relaxation the stretch ratio was 1.25 or less and the shear relaxation modulus was calculated from the neo-Hookean stress-strain relation. In the dynamic measurements, the strain amplitude was 15% or less; after conversion to the timedependent shear relaxation modulus G(t) the two sets of measurements were combined and the contribution of the unattached species G1(t) was calculated by difference. After multiplication by (1 − v)−1G/Ge, where v2 is the volume fraction of network, G is the plateau modulus of the uncrosslinked polymer, and Ge is the equilibrium modulus of the network containing unattached molecules, G1(t) was compared with G11(t), the relaxation modulus was essentially the same in both environments. The relaxation was slower in the networks than in the uncrosslinked polymer by 1 to 2 orders of magnitude, and it increased gradually with increasing Ge, which is a measure of total to pological obstacles represented by crosslinks plus trapped entanglements. A similar but less striking difference between relaxation in a network and in the homologous environment of a linear polymer was previously observed in end-linked polybutadiene networks and the butadiene phase of a styrene-butadiene-styrene block copolymer. It appears that, in these systems where the topology of the obstacles is fixed, the reptation is severely restricted or else alternative modes of configurational rearrangement which contribute to relaxation in the uncrosslinked polymer are suppressed.  相似文献   

7.
This study explores the molecularly templated reaction of pyrene‐terminated telechelic poly(dimethyl siloxane) (PDMS) with graphene oxide (GO) to produce composite elastomers. These materials undergo chemical crosslinking between secondary amides near PDMS chain ends and epoxies on the surface of GO as confirmed by infrared spectroscopy, rheology, gel content, and mechanical property measurements. The incorporation of pyrene end groups introduces π–π interactions with GO surfaces that enhance the reaction efficacy of the nearby secondary amide groups. As a comparison, methoxy‐terminated telechelic PDMS containing the same secondary amides near the chain ends did not exhibit appreciable crosslinking with GO. Depending on the concentration of the amide groups, the pyrene‐terminated PDMS/GO elastomer can be highly crosslinked (e.g., up to 96 wt % gel) but highly extensible (e.g., extensional strains of more than 200%). This general strategy could be implemented using other amide containing polymers to produce a wide range of high‐performance thermosets and elastomers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1406–1413  相似文献   

8.
Accelerated crosslinking of novel poly(3,4‐epoxy‐1‐butene) (3,4‐PEPB) oligomers in the presence of a cobalt‐based redox catalyst was investigated. Previous studies using model compounds, 3,4‐dimethoxy‐1‐butene and 1,4‐dimethoxy‐2‐butene, suggested that maleation of hydroxyl‐terminated 3,4‐PEPB oligomers would result in more rapid crosslinking in thin films. Novel maleated oligomers offered a unique combination of both electron‐rich and electron‐poor olefinic sites, and quantitative maleation significantly increased the crosslinking rate of 3,4‐PEPB. Efficient copolymerization between terminal maleate groups and olefinic groups in the repeating unit was proposed to account for accelerated crosslinking rates. Furthermore, the addition of novel reactive diluents, such as maleic acid mono‐ethyl ester, also effectively improved the 3,4‐PEPB crosslinking rate. Sol fraction measurements as a function of coating thickness revealed that the crosslinking rate versus oxygen diffusion was less significant for the maleated oligomers because of the presence of reactive electron‐poor olefins. Sol fractions were constant for catalyst concentrations greater than 0.25–0.50 wt % (as compared with oligomer feed). This observation suggested that a redox process was not a dominant factor in determining crosslinking rates at various experimental conditions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2789–2798, 2002  相似文献   

9.
Difunctional and tetrafunctional ethoxysilanes in varying proportions were used to simultaneously chain-extend and crosslink dihydroxyl-terminated poly(dimethyl siloxane). When only dimethyl deithoxysilane was used an insoluble product, possibly a catenate, was formed. Its swelling behavior was equivalent to that of a tetrafunctional network obtained by end-linking chains approximately twice as long as those actually used.  相似文献   

10.
Molecular mechanics and dynamics simulations have been performed on methyl-pendant PBZT to study the effects of intermolecular crosslinking. Several possible crosslinked structures were investigated. The effect of crosslinking was found to be strongly dependent upon crosslink type and, in some instances, crosslink density. A significant axial stress is predicted to occur upon the formation of phenyl-to-phenyl type crosslinks. This provides a reasonable explanation for the experimental observation of transverse cracks in the skin of crosslinked, MePBZT fiber. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3057–3064, 1998  相似文献   

11.
Direct spectroscopic evidence for radiation-induced crosslinking of poly(tetrafluoroethylene) (PTFE) is presented for all x-ray and electron dose levels above which it is possible to distinguish between deliberately introduced radiation damage and the x-ray damage inherent in obtaining an x-ray photoelectron spectrum (XPS). The C (1s) spectrum obtained after irradiation with 2 keV electrons for all doses greater than 1 μA-min/cm2 consists of a four-peak spectrum identical to that previously obtained for plasma-polymerized tetrafluoroethylene and assigned to carbon atoms with variable numbers of bound F atoms (CF3, CF2, CF1, and CF0). X-ray irradiated PTFE can be fitted with the same four-peak spectrum. At or below an electron dose level of 1 μA-min/cm2, the radiation damage is comparable to that produced by the x-ray dose necessary to obtain an XPS spectrum. The CF1 and CF0 components increase with increasing electron dose, and at high electron doses dominate the spectrum. With increasing dose the CF3 component approaches a constant value while both the CF2 component and the total F : C ratio decreases. These four components are those expected to result from radiation-induced crosslinking reactions of the polymer and are consistent with previous suggestions that crosslinking is the basis of radiation patterned adhesion to PTFE. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Sorption of N2, O2, Ar, CH4, CO2, C2H4, and C2H6 in poly (dimethyl siloxane) liquid and rubber and the dilation of the polymers due to sorption of the gases are studied at 25°C under pressures up to 50 atm. In the liquid, the sorption isotherms for low-solubility and high-solubility gases are described by Henry's law and the Flory–Huggins equation, respectively. Gas sorption in the rubber, which contains a 29 wt % silica filler, follows the dual-mode sorption model, though marked hysteresis is observed in the sorption of O2 and CH4. The dilation isotherms increase linearly or exponentially in both polymers with increasing pressure. Considering that gas molecules adsorbed into micropores of the filler particles do not participate in the dilation, partial molar volumes of the dissolved gases in the rubber are determined from data of sorption and dilation. The values are nearly equal to the partial molar volumes in the liquid (48–60 cm3/mol).  相似文献   

13.
14.
Poly(caprolactone) (PCL) networks have received significant attention in the literature because of many emerging potential applications as biodegradable materials. In this study, the Michael addition reaction was used for the first time to synthesize biodegradable networks using crosslinking of acetoacetate‐functionalized PCL (PCL bisAcAc) oligomers with neopentyl glycol diacrylate. Hydroxyl‐terminated PCL telechelic oligomers with number‐average molecular weights ranging from 1000 to 4000 g/mol were quantitatively functionalized with acetoacetate groups using transacetoacetylation. In addition to difunctional PCL oligomers, hydroxyl‐terminated trifunctional star‐shaped PCL oligomers were functionalized with acetoacetate groups. Derivatization of the terminal hydroxyl groups with acetoacetate groups was confirmed using FTIR spectroscopy, 1H NMR spectroscopy, mass spectrometry, and base titration of hydroxyl end groups. PCL bisAcAc precursors were reacted with neopentyl glycol diacrylate in the presence of an organic base at room temperature. The crosslinking reactions yielded networks with high gel contents (>85%). The thermomechanical properties of the networks were analyzed to investigate the influence of molecular weight between crosslink points. The glass transition and the extent of crystallinity of the PCL networks were dependent on the molecular weight of the PCL segment. Dynamic mechanical analysis indicated that the plateau modulus of the networks was dependent on the molecular weight of PCL, which was related to the crosslink density of the networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5437–5447, 2009  相似文献   

15.
This paper shows the in situ synthesis of an hexyl acrylate monolith in PDMS microfluidic devices and its subsequent use as stationary phase for electrochromatography on chip. To overcome the ability of PDMS material to absorb organic monomers, surface modification of the enclosed channels was realized by UV-mediated graft polymerization. This grafting procedure is based on the preliminary adsorption of a photoinitiator onto the PDMS surface and polymerization of charged monomers. Next, hexyl acrylate monoliths were cast in situ using photopolymerization process. The chromatographic behavior of the monolithic column was confirmed by the successful separation of derivatized catecholamines in the PDMS device using a 30 mm effective separation length (100 microm x 100 microm section). Efficiencies reached up to 200,000 plates per meter.  相似文献   

16.
The electron beam induced branching of poly(vinylmethyl ether) (PVME) in bulk and in isopropanol solutions has been studied by gel permeation chromatography. The branching probability of bulk PVME induced by high-energy electrons can be characterized by gel permeation chromatography and a simple probability constant obtained. In isopropanol solutions this branching probability is not constant as a function of dose and is found to decrease with decreasing concentration. These results indicate the importance of solvent effects on the crosslinking of PVME in isopropanol solution by electron beam radiation. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Dihydridocarbonyltris(triphenylphosphine)ruthenium catalyzes the regiospecific anti‐Markovnikov addition of an ortho C? H bond of benzophenone across the C? C double bonds of α,ω‐bis(trimethylsilyloxy)copoly(dimethylsiloxane/vinylmethylsiloxane) (99:1), α,ω‐bis(vinyldimethylsilyloxy)poly(dimethylsiloxane), and 1,3‐divinyltetramethyldisiloxane to yield α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(2′‐benzophenonyl)ethylmethylsiloxane]), α,ω‐bis[2‐(2′‐benzophenonyl)ethyldimethylsilyloxy]poly(dimethylsiloxane), and 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane, respectively. These materials have been characterized with 1H, 13C, and 29Si NMR and IR spectroscopy. Their molecular weight distributions have been determined by gel permeation chromatography. The thermal stability of the polymers has been measured by thermogravimetric analysis, and their glass‐transition temperatures (Tg's) have been determined by differential scanning calorimetry. The molecular weight distribution, thermal stability, and Tg's of the modified polysiloxanes are similar to those of the precursor polymers. The molecular weights of these materials can be significantly increased via heating to 300 °C for 1 h. This may be due to crosslinking, by pyrocondensation, of pendant anthracene groups, which are produced by the pyrolysis of the attached ortho‐alkyl benzophenones. UV spectroscopy of the pyrolysate of 1,3‐bis[2‐(2′‐benzophenonyl)ethyl]tetramethyldisiloxane has confirmed the presence of pendant anthracene groups. Thermal crosslinking by the pyrocondensation of pendant anthracene groups has been verified by the pyrolysis of α,ω‐bis(trimethylsilyloxy)copoly[dimethylsiloxane/2‐(9′‐anthracenyl)ethylmethylsiloxane] (97:3). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5514–5522, 2004  相似文献   

18.
Raman depolarization (ρ) measurements have been made over the temperature range 20 > T > 60°C for solutions of poly(dimethyl siloxane) (mol wt 7.7 × 104 and 2.0 × 104) for several concentrations up to 100%. The band studied was the highly polarized methyl stretch at 2907 cm?1. Computer calculations of the probability pt of a rotational isomer being trans allow the ρ values to be related to ΔG, the free energy of mixing. ΔG is plotted as a function of concentration and minima are observed at 60 ± 3% (mol wt = 7.7 × 104) and 70 ± 3% (mol wt = 2 × 104).  相似文献   

19.
20.
Bis(m‐aminophenyl)methylphosphine oxide based benzoxazine (Bz‐BAMPO) was obtained using a three‐step synthetic method from the aromatic diamine and 2‐hydroxybenzaldehyde as starting materials. The structure and purity of the monomer was confirmed by elemental analysis, FTIR, 1H NMR, 13C NMR and 31P NMR spectra. The curing kinetics of Bz‐BAMPO was investigated by nonisothermal differential scanning calorimetry (DSC) at different heating rates and by FTIR spectroscopy. The isoconversional method was used to evaluate the dependence of the effective activation energy on the extent of conversion. The evolving factor analysis (EFA) method was applied to the spectroscopic FTIR data obtained in monitoring benzoxazine homopolymerizations. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7162–7172, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号