共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐CI self‐complementary circulant graphs of prime‐squared order are constructed and enumerated. It is shown that for prime p, there exists a self‐complementary circulant graph of order p2 not Cayley isomorphic to its complement if and only if p ≡ 1 (mod 8). Such graphs are also enumerated. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 128–141, 2000 相似文献
2.
Andrs Gyrfs 《Journal of Graph Theory》2001,38(2):111-112
A simple proof is given for a result of Sali and Simonyi on self‐complementary graphs. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 111–112, 2001 相似文献
3.
4.
Rank‐width of a graph G, denoted by rw (G), is a width parameter of graphs introduced by Oum and Seymour [J Combin Theory Ser B 96 (2006), 514–528]. We investigate the asymptotic behavior of rank‐width of a random graph G(n, p). We show that, asymptotically almost surely, (i) if p∈(0, 1) is a constant, then rw (G(n, p)) = ?n/3??O(1), (ii) if , then rw (G(n, p)) = ?1/3??o(n), (iii) if p = c/n and c>1, then rw (G(n, p))?rn for some r = r(c), and (iv) if p?c/n and c81, then rw (G(n, p))?2. As a corollary, we deduce that the tree‐width of G(n, p) is linear in n whenever p = c/n for each c>1, answering a question of Gao [2006]. © 2011 Wiley Periodicals, Inc. J Graph Theory. 相似文献
5.
The clique graph K(G) of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family ℱ of graphs, the clique‐inverse graphs of ℱ are the graphs whose clique graphs belong to ℱ. In this work, we describe characterizations for clique‐inverse graphs of K3‐free and K4‐free graphs. The characterizations are formulated in terms of forbidden induced subgraphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 257–272, 2000 相似文献
6.
Shonda Gosselin 《组合设计杂志》2011,19(6):439-454
In this article, we examine the possible orders of t‐subset‐regular self‐complementary k‐uniform hypergraphs, which form examples of large sets of two isomorphic t‐designs. We reformulate Khosrovshahi and Tayfeh–Rezaie's necessary conditions on the order of these structures in terms of the binary representation of the rank k, and these conditions simplify to a more transparent relation between the order n and rank k in the case where k is a sum of consecutive powers of 2. Moreover, we present new constructions for 1‐subset‐regular self‐complementary uniform hypergraphs, and prove that these necessary conditions are sufficient for all k, in the case where t = 1. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 439‐454, 2011 相似文献
7.
8.
The theory of dense graph limits comes with a natural sampling process which yields an inhomogeneous variant of the Erd?s–Rényi random graph. Here we study the clique number of these random graphs. We establish the concentration of the clique number of for each fixed n , and give examples of graphons for which exhibits wild long‐term behavior. Our main result is an asymptotic formula which gives the almost sure clique number of these random graphs. We obtain a similar result for the bipartite version of the problem. We also make an observation that might be of independent interest: Every graphon avoiding a fixed graph is countably‐partite. © The Authors Random Structures & Algorithms Published byWiley Periodicals, Inc. Random Struct. Alg., 2016 © 2017 The Authors Random Structures & Algorithms Published by Wiley Periodicals, Inc. Random Struct. Alg., 51, 275–314, 2017 相似文献
9.
José Luis Palacios 《Journal of Theoretical Probability》1992,5(3):597-600
We give very simple proofs for an (N–1)H
N–1 lower bound and anN
2 upper bound for the expected cover time of symmetric graphs. 相似文献
10.
Let Γ be an X‐symmetric graph admitting an X‐invariant partition ?? on V(Γ) such that Γ?? is connected and (X, 2)‐arc transitive. A characterization of (Γ, X, ??) was given in [S. Zhou Eur J Comb 23 (2002), 741–760] for the case where |B|>|Γ(C)∩B|=2 for an arc (B, C) of Γ??.We con‐sider in this article the case where |B|>|Γ(C)∩B|=3, and prove that Γ can be constructed from a 2‐arc transitive graph of valency 4 or 7 unless its connected components are isomorphic to 3 K 2, C 6 or K 3, 3. As a byproduct, we prove that each connected tetravalent (X, 2)‐transitive graph is either the complete graph K 5 or a near n‐gonal graph for some n?4. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 232–245, 2010 相似文献
11.
It is now known that many properties of the objects in certain combinatorial structures are equivalent, in the sense that any object possessing any of the properties must of necessity possess them all. These properties, termed quasirandom, have been described for a variety of structures such as graphs, hypergraphs, tournaments, Boolean functions, and subsets of Z n, and most recently, sparse graphs. In this article, we extend these ideas to the more complex case of graphs which have a given degree sequence. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008 相似文献
12.
In this article we study Hamilton cycles in sparse pseudo‐random graphs. We prove that if the second largest absolute value λ of an eigenvalue of a d‐regular graph G on n vertices satisfies and n is large enough, then G is Hamiltonian. We also show how our main result can be used to prove that for every c >0 and large enough n a Cayley graph X (G,S), formed by choosing a set S of c log5 n random generators in a group G of order n, is almost surely Hamiltonian. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 17–33, 2003 相似文献
13.
We show that almost surely the rank of the adjacency matrix of the Erd?s‐Rényi random graph G(n,p) equals the number of nonisolated vertices for any c ln n/n ≤ p ≤ 1/2, where c is an arbitrary positive constant larger than 1/2. In particular, the adjacency matrix of the giant component (a.s.) has full rank in this range. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008 相似文献
14.
《Random Structures and Algorithms》2018,52(4):545-559
We use a theorem by Ding, Lubetzky, and Peres describing the structure of the giant component of random graphs in the strictly supercritical regime, in order to determine the typical size of MAXCUT of in terms of ɛ. We then apply this result to prove the following conjecture by Frieze and Pegden. For every , there exists such that w.h.p. is not homomorphic to the cycle on vertices. We also consider the coloring properties of biased random tournaments. A p‐random tournament on n vertices is obtained from the transitive tournament by reversing each edge independently with probability p. We show that for the chromatic number of a p‐random tournament behaves similarly to that of a random graph with the same edge probability. To treat the case we use the aforementioned result on MAXCUT and show that in fact w.h.p. one needs to reverse edges to make it 2‐colorable. 相似文献
15.
16.
We show a connection between two concepts that have hitherto been investigated separately, namely convex‐round graphs and circular cliques. The connections are twofold. We prove that the circular cliques are precisely the cores of convex‐round graphs; this implies that convex‐round graphs are circular‐perfect, a concept introduced recently by Zhu [10]. Secondly, we characterize maximal Kr‐free convex‐round graphs and show that they can be obtained from certain circular cliques in a simple fashion. Our proofs rely on several structural properties of convex‐round graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 182–194, 2002 相似文献
17.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | s∈S}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | g∈G, s∈S}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010 相似文献
18.
《Journal of Graph Theory》2018,88(2):347-355
A connected t‐chromatic graph G is double‐critical if is ‐colorable for each edge . A long‐standing conjecture of Erdős and Lovász that the complete graphs are the only double‐critical t‐chromatic graphs remains open for all . Given the difficulty in settling Erdős and Lovász's conjecture and motivated by the well‐known Hadwiger's conjecture, Kawarabayashi, Pedersen, and Toft proposed a weaker conjecture that every double‐critical t‐chromatic graph contains a minor and verified their conjecture for . Albar and Gonçalves recently proved that every double‐critical 8‐chromatic graph contains a K8 minor, and their proof is computer assisted. In this article, we prove that every double‐critical t‐chromatic graph contains a minor for all . Our proof for is shorter and computer free. 相似文献
19.
WangShiying ZhangYuren LiuYan 《高校应用数学学报(英文版)》1999,14(4):492-494
Abstract. Let Sn be the symmetric group 相似文献
20.
A clique coloring of a graph is a coloring of the vertices so that no maximal clique is monochromatic (ignoring isolated vertices). The smallest number of colors in such a coloring is the clique chromatic number. In this paper, we study the asymptotic behavior of the clique chromatic number of the random graph ??(n,p) for a wide range of edge‐probabilities p = p(n). We see that the typical clique chromatic number, as a function of the average degree, forms an intriguing step function. 相似文献