首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of a new compound, 2‐[(4‐bromomethyl)phenyl]‐4,5‐dihydro‐4,4‐dimethyloxazole ( 1 ), and its utility in the synthesis of oxazoline‐functionalized polystyrene by atom transfer radical polymerization (ATRP) methods are described. Aromatic oxazolyl‐functionalized polymers were prepared by the ATRP of styrene, initiated by ( 1 ) in the presence of copper(I) bromide/2,2′‐bipyridyl catalyst system, to afford the corresponding α‐oxazolyl‐functionalized polystyrene ( 2 ). The polymerization proceeded via a controlled free radical polymerization process to produce the corresponding α‐oxazolyl‐functionalized polymers with predictable number‐average molecular weights, narrow molecular weight distributions in high‐initiator efficiency reactions. Post‐ATRP chain end modification of α‐oxazolyl‐functionalized polystyrene ( 2 ) to form the corresponding α‐carboxyl‐functionalized polystyrene ( 3 ) was achieved by successive acid‐catalyzed hydrolysis and saponification reactions. The polymerization processes were monitored by gas chromatography analyses. The unimolecular‐functionalized initiator and functionalized polymers were characterized by thin layer chromatography, spectroscopy, size exclusion chromatography, and nonaqueous titration analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

2.
Cyclocondensation of polystyrene‐supported α‐selenopropionic acid with amidoximes in the presence of 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride (EDC) followed by oxidative deselenation efficiently afforded 5‐vinyl 1,2,4‐oxadiazoles in good yield and purity with a facile work‐up procedure.  相似文献   

3.
α‐Amino phosphonic acid derivatives are considered to be the most important structural analogues of α‐amino acids and have a very wide range of applications. However, approaches for the catalytic asymmetric synthesis of such useful compounds are very limited. In this work, simple, efficient, and versatile organocatalytic asymmetric 1,2‐addition reactions of α‐isothiocyanato phosphonate were developed. Through these processes, derivatives of β‐hydroxy‐α‐amino phosphonic acid and α,β‐diamino phosphonic acid, as well as highly functionalized phosphonate‐substituted spirooxindole, can be efficiently constructed (up to 99 % yield, d.r. >20:1, and >99 % ee). This novel method provides a new route for the enantioselective functionalization of α‐phosphonic acid derivatives.  相似文献   

4.
The regioselective and diastereoselective chromium(II)‐mediated reactions of 4‐bromocrotonic acid or amides with aldehydes and ketones can proceed without the need to protect protic sites to generate the respective α‐alkenyl‐β‐hydroxy adducts, i.e. formally the addition of the α‐anion of a carboxylic acid or amide to an oxo‐compound is featured. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The reactions of α‐chloroformylarylhydrazines 1 with various types of mercaptan, thiourea and α‐cyclodiketone have been studied intensively. 1‐Arylhydrazinecarbothioates 2 were obtained via thioesterization when α‐chloroformylarylhydrazines reacted with thiols. On the other hand, compounds 3 were obtained when α‐chloroformylarylhydrazines reacted with thio‐containing heterocyclic compounds, which suggested a totally different mechanism in these types of reactions. Further studies on the reaction of α‐chloroformylarylhydrazines 1 with thiourea compounds confirmed a novel cyclization and de‐cyclization mechanism, which led to give 2‐arylhydrazinecarboximidamides 5 and 1,3,4‐thiadiazolin‐5‐ones 6 . In addition, various 1,3,4‐oxadiazines 9 were obtained by reacting α‐chloroformylarylhydrazines with α‐cyclodiketones, showing ring cyclization was involved in this type of reaction.  相似文献   

6.
The first catalytic enantioselective 1,3‐dipolar cycloaddition of azomethine ylides to α‐aminoacrylate catalyzed by a AgOAc/ferrocenyl oxazolinylphosphine (FOXAP) system was developed, which exhibits excellent exo‐ and enantioselectivity (92–99 % ee). This process provides efficient access to useful 4‐aminopyrrolidine‐2,4‐dicarboxylic acid (APDC)‐like compounds containing a unique quaternary α‐amino acid unit.  相似文献   

7.
α‐Linolenic acid is an essential omega‐3 fatty acid needed for human health. However, the isolation of high‐purity α‐linolenic acid from plant resources is challenging. The preparative separation methods of α‐linolenic acid by both conventional and pH‐zone refining counter current chromatography were firstly established in this work. The successful separation of α‐linolenic acid by conventional counter current chromatography was achieved by the optimized solvent system n‐heptane/methanol/ water/acetic acid (10:9:1:0.04, v/v), producing 466 mg of 98.98% α‐linolenic acid from 900 mg free fatty acid sample prepared from perilla seed oil with linoleic acid and oleic acid as by‐products. The scaled‐up separation in 45× is efficient without loss of resolution and extension of separation time. The separation of α‐linolenic acid by pH‐zone refining counter current chromatography was also satisfactory by the solvent system n‐hexane/methanol/water (10:5:5, v/v) and the optimized concentration of trifluoroacetic acid 30 mM and NH4OH 10 mM. The separation can be scaled up in 180× producing 9676.7 mg of 92.79% α‐linolenic acid from 18 000 mg free fatty acid sample. pH‐zone refining counter current chromatography exhibits a great advantage over conventional counter current chromatography with 20× sample loading capacity on the same column.  相似文献   

8.
Debromination of N‐benzyl 4‐ or 5‐substituted α‐bromo‐α‐p‐toluenesulfonylglutarimides is achieved with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) to give the N‐benzyl 4‐ or 5‐substituted α‐p‐toluenesulfonylglutarimides. The DBU/THF system is applied to a new methodology for the synthesis of bicyclic glutarimide skeleton in moderate yields.  相似文献   

9.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

10.
The synthesis of all 20 common natural proteinogenic and 4 otherα‐amino acid‐isosteric α‐amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5‐tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α‐amino acid‐isosteric α‐amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non‐natural derivatives is of high interest to advance the field.  相似文献   

11.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

12.
The photoinduced reaction of a mixture of (Z)‐α‐cyano‐β‐bromomethylcinnamide (1) and (E)‐α‐cyano‐β‐bromomethylcinnamide (2) with 1‐benzyl‐1, 4‐dihydronicotinamide produces a mixture of the (E)‐ and (Z)‐ isomers of α‐cyano‐β‐methylcinnamide (3 and 4). Using spin‐trapping technique for monitoring reactive intermediate, it is shown that the reaction proceeds via electron transfer‐debromination‐H abstraction mechanism. The thermal reaction of the same substrate with BNAH at 60°C in the dark gives three products: the (E)‐ and (Z)‐isomers of α‐cyano‐β‐methylcinnamide and a dehydrodimeric product; 2, 7‐dicyano‐3, 6‐diphenylocta‐2, 4, 6‐trien‐1, 8‐dioic amide (7). Based on product analysis, scavenger experiment and cyclic voltammetry, an electron transfer‐debromination‐disproportionation mechanism is proposed.  相似文献   

13.
One of the most common protein–protein interactions (PPI) is the interaction of the α‐helix of one protein with the surface of the second one. Terphenylic scaffolds are bioinspired motifs in the inhibition of PPIs and have been identified as suitable α‐helix mimetics. One of the challenging aspects of this strategy is the poor solubility of terphenyls under physiological conditions. In the literature pyrrolopyrimidine‐, pyrimidine‐ or pyridazine‐based mimetics have been reported to show improved solubility. We present a new convergent strategy for the synthesis of linear pyridine‐type teraryls based on a phenylic core unit. A general approach for the synthesis of 3,5‐disubstituted pyridine‐based boronic acid pinacol esters with amino acid side chains in the 3‐position (representing Phe, Leu, Ile, Lys, Asp, Asn) is presented and exploits the functional group tolerance of the Knochel–Grignard reagents. The building blocks have been used in a convergent in situ two‐step synthesis of teraryl α‐helix mimetics.  相似文献   

14.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

15.
The one‐pot three‐component synthesis of a variety of α‐aminonitriles has been studied using a catalytic amount of a sulfonic acid‐functionalized ordered nanoporous carbon catalyst, CMK‐5‐SO3H, at room temperature under solvent‐free reaction conditions. The heterogeneous catalyst could be readily isolated from the reaction mixture and reused at least ten times without significant loss in activity. A clean, rapid and simple method for the preparation of α‐aminonitriles using the recoverable CMK‐5‐SO3H catalyst is described.  相似文献   

16.
The mixing enthalpies of aqueous heavy rare alkali metal chloride RbC1 solutions with aqueous α-amino acid (Loglycine, L-alanine and α-aminobutyric acid) solutions, as well as the dilution enthalpies of RbC1 and α-amino acid solutions in pure water had been measured at 298.15K. The transfer enthalpies of RbCI from pure water to aqueous α-amino acid solutions could be obtained from these data. The enthalpic pair interaction parameters of RbC1 with α-amino acid in water have been evaluated according to the McMillan-Mayer theory and discussed in terms of the electrostatic interaction, structure interaction and Savage-wood group additivity mode.  相似文献   

17.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

18.
α‐Imidazolformylarylhydrazine 2 and α‐[1,2,4]triazolformylarylhydrazine 3 have been synthesized through the nucleophilic substitution reaction of 1 with imidazole and 1,2,4‐triazole, respectively. 2,2′‐Diaryl‐2H,2′H‐[4,4′]bi[[1,2,4]‐triazolyl]‐3,3′‐dione 4 was obtained from the cycloaddition of α‐chloroformylarylhydrazine hydrochloride 1 with 1,2,4‐triazole at 60 °C and in absence of n‐Bu3N. The inducing factor for cycloaddition of 1 with 1,2,4‐triazole was ascertained as hydrogen ion by the formation of 4 from the reaction of 3 with hydrochloric acid. 4 was also acquired from the reaction of 3 with 1 and this could confirm the reaction route for cycloaddition of 1 with 1,2,4‐triazole. Some acylation reagents were applied to induce the cyclization reaction of 2 and 3.1 possessing chloroformyl group could induce the cyclization of 2 to give 2‐aryl‐4‐(2‐aryl‐4‐vinyl‐semicarbazide‐4‐yl)‐2,4‐dihydro‐[1,2,4]‐triazol‐3‐one 6. 7 was obtained from the cyclization of 2 induced by some acyl chlorides. Acetic acid anhydride like acetyl chloride also could react with 2 to produce 7D . 5‐Substituted‐3‐aryl‐3H‐[1,3,4]oxadiazol‐2‐one 8 was produced from the cyclization reaction of 3 induced by some acyl chlorides or acetic acid anhydride. The 1,2,4‐triazole group of 3 played a role as a leaving group in the course of cyclization reaction. This was confirmed by the same product 8 which was acquired from the reaction of 1 , possessing a better leaving group: Cl, with some acyl chlorides or acetic acid anhydride.  相似文献   

19.
The reaction of aryl ketones with sodium azide using polymer‐supported bis(trifluoroacetoxyiodo)‐benzene (PSBTI) in the presence of trifluoroacetic acid (TFA) to prepare α‐azidoketones in one‐pot conditions is reported.  相似文献   

20.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号