首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Nonspecific interaction is a key parameter affecting the efficiency of proteins, nucleic acids or cell separation. Currently, many approaches to introduce antifouling properties to materials have been developed. Among these, surface modification with polymer brushes plays a prominent role. The aim of this study was to synthesize new magnetic microspheres grafted with poly(N,N‐dimethylacrylamide) (PDMA) that resist nonspecific protein adsorption. Monodisperse macroporous poly(2‐hydroxyethyl methacrylate) (PHEMA) microspheres, 4 μm in size, were synthesized by a multiple swelling polymerization method. To render the microspheres magnetic, iron oxide was precipitated inside the microsphere pores. Functional carboxyl groups, introduced by the hydrolysis of the 2‐(methacryloyl)oxyethyl acetate (HEMA‐Ac) comonomer, were used to react with propargylamine, followed by coupling of a chain transfer agent via an azide‐alkyne click reaction. PDMA was grafted from the PHEMA microspheres using reversible addition‐fragmentation chain transfer polymerization (RAFT), resulting in surfaces with more than 81 wt % PDMA attached. The successful modification of the microspheres was confirmed by XPS. The magnetic microspheres grafted with PDMA showed excellent antifouling properties as tested in bovine serum protein solutions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1036–1043  相似文献   

2.
A detailed study of the pH‐ and sugar‐responsive behavior of poly(3‐acrylamidophenylboronic acid pinacol ester)‐b‐poly(N,N‐dimethylacrylamide) (PAPBAE‐b‐PDMA) block copolymers is presented. Reversible addition‐fragmentation chain transfer (RAFT) polymerization of the pinacol ester of 3‐acrylamidophenylboronic acid resulted in homopolymers with molecular weights between 12,000 and 37,000 g/mol. The resulting homopolymers were employed as macro‐chain transfer agents during the polymerization of N,N‐dimethylacrylamide (DMA). Successful chain extension and removal of the pinacol protecting groups to yield poly(3‐acrylamidophenylboronic acid)‐b‐PDMA (PAPBA‐b‐PDMA) with free boronic acid moieties resulted in pH‐ and sugar‐responsive block copolymers that were subsequently investigated for their behavior in aqueous solution. The PAPBA‐b‐PDMA block copolymers were capable of solution self‐assembly due to the PAPBA block being water‐insoluble below its pKa. The resulting aggregates were demonstrated to solubilize and release model hydrophobic compounds, as demonstrated by fluorescence studies. Dissociation of the aggregates was induced by raising the pH above the pKa of the boronic acid residues or by adding sugars capable of forming boronate esters. Aggregate size, dissociation kinetics, and the effect of various sugars were considered. The critical sugar concentration needed to induce aggregate dissociation was tuned by incorporation of hydrophilic DMA units within the PAPBA responsive segment to yield PDMA‐b‐poly(3‐acrylamidophenylboronic acid‐co‐DMA) block copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A series of well‐defined triblock copolymers, poly(N, N‐dimethylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N, N‐dimethylacrylamide) (PDMA‐b‐PEO‐b‐PDMA) synthesized by atom transfer radical polymerization, were used as physical coatings for protein separation. A comparative study of EOF showed that the triblock copolymer presented good capillary coating ability and EOF efficient suppression. The effects of the Mr of PDMA block in PDMA‐b‐PEO‐b‐PDMA triblock copolymer and buffer pH on the separation of basic protein for CE were investigated. Moreover, the influence of the copolymer structure on separation of basic protein was studied by comparing the performance of PDMA‐b‐PEO‐b‐PDMA triblock copolymer with PEO‐b‐PDMA diblock copolymer. Furthermore, the triblock copolymer coating showed higher separation efficiency and better migration time repeatability than fused‐silica capillary when used in protein mixture separation and milk powder samples separation, respectively. The results demonstrated that the triblock copolymer coatings would have a wide application in the field of protein separation.  相似文献   

4.
Polymeric fluorosurfactants, using poly(N,N‐dimethylacrylamide) (PDMA) or PDMA copolymers containing acrylic acid (AA) or 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) comonomers were synthesized by copolymerization of DMA, DMA/AA, or DMA/AMPS and methacrylates composed of 1,1‐dihydroperfluorodecanoyl groups separated from the methacrylate by polyethylene glycol (PEG) groups with molecular weights ranging from 1 to 6 kD. The stability of aqueous perfluorocarbon (PFC) emulsions mediated by these polymeric fluorosurfactants was found to be affected by polymer concentration, ionic comonomer content, perfluoroalkyl (RF) comonomer content, and PEG spacer length. Thus, emulsion stability characterized by average particle size and morphology was improved by increased AA or AMPS content (up to 30 weight percent), increased PEG chain length and RF comonomer content, and greater polymer concentration.  相似文献   

5.
The synthesis and spectroscopic characterization of a new family of amphiphilic multiblock and triblock copolymers is described. The synthetic methodology rests on the preparation of telechelic multifunctional and difunctional chain transfer agents easily available in two synthetic steps from commercially available polydimethylsiloxane‐containing starting materials. Telechelic polymers thus synthesized are used as macromolecular chain transfer agents in the reversible addition fragmentation chain transfer (RAFT) polymerization of N,N‐dimethylacrylamide (DMA) enabling the synthesis of (AB)n‐type multiblock and ABA‐type triblock copolymers of varying compositions possessing monomodal molecular weight distribution. (AB)n multiblock copolymers [(PDMA‐b‐PDMS)n] were prepared with between 52 and 95 wt % poly(dimethylacrylamide) with number average molecular weights (Mn) between 14,000 and 86,000 (polydispersities of 1.20–2.30). On the other hand, ABA block copolymers with DMA led to amphiphilic block copolymers (PDMA‐b‐PDMS‐b‐PDMA) with Mn values between 9000 and 44,000 (polydispersities of 1.24–1.62). © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7033–7048, 2008  相似文献   

6.
Poly(N,N‐dimethylacrylamide‐co‐allyl methacrylate) (DMA‐co‐AMA) copolymers were prepared by the copolymerization of N,N‐dimethylacrylamide with allyl methacrylate (AMA). The methacryloyl group of AMA reacted preferentially, and this resulted in pendant allyl groups along the copolymer chains. Aqueous solutions of these DMA‐co‐AMA copolymers were thermoresponsive and showed liquid–liquid phase transitions at temperatures that depended on the AMA content. Hydrogel microspheres were prepared from these thermally phase‐separated liquid microdroplets by the free‐radical crosslinking of the pendant allyl groups. The morphologies of the resulting thermoresponsive microspheres as a function of the reaction temperature and the amount of the initiator were examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1641–1648, 2005  相似文献   

7.
Covalent functionalization of alkyne‐decorated multiwalled carbon nanotubes (MWNTs) with a well‐defined, azide‐derivatized, thermoresponsive diblock copolymer, poly(N,N‐dimethylacrylamide)‐poly(N‐isopropylacrylamide) (PDMA‐PNIPAM) was accomplished by the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition. It was found that this reaction could simultaneously increase the molecular size and bonding density of grafted polymers when PDMA‐PNIPAM micelles were employed in the coupling system. On the other hand, attachment of molecularly dissolved unimers of high‐molecular weight onto the nanotube resulted in low‐graft density. The block copolymer bearing azide groups at the PDMA end was prepared by reversible addition–fragmentation transfer polymerization, which formed micelles with a diameter of ~40 nm at temperatures above its critical micelle temperature. Scanning electron microscopy was utilized to demonstrate that the coupling reaction was successfully carried out between copolymer micelles and alkyne‐bearing MWNTs. FTIR spectroscopy was utilized to follow the introduction and consumption of alkyne groups on the MWNTs. Thermogravimetric analysis indicated that the functionalized MWNTs consisted of about 45% polymer. Transmission electron microscopy was utilized to image polymer‐functionalized MWNTs, showing relatively uniform polymer coatings present on the surface of nanotubes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7187–7199, 2008  相似文献   

8.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

9.
Nanoparticles formed from amphiphilic block copolymers can be used as drug delivery vehicles for hydrophilic therapeutics. Poly(ethylene glycol) (PEG)‐peptide copolymers were investigated for their self‐assembling properties and as consequent potential delivery systems. Mono‐ and dihydroxy PEGs were functionalized with a pentavaline sequence bearing Fmoc end groups. The molecular weight of the PEG component was varied to evaluate copolymer size and block number. These di‐ and tri‐block copolymers readily self‐assemble in aqueous solution with critical aggregation concentrations (CACs) of 0.46–16.29 μM. At concentrations above the CAC, copolymer solutions form spherical assemblies. Dynamic light scattering studies indicate these aggregates have a broad size distribution, with average diameters between 33 and 127 nm. The copolymers are comprised β‐conformations that are stable up to 80 °C, as observed by circular dichroism. This peptide secondary structure is retained in solutions up to 50% MeOH as well. The triblock copolymers proved to be the most stable, with copolymers synthesized from 10 kDa PEG having the most stable particles. Loading of carboxyfluorescein at 2–5 mol % shows that these copolymers have the potential to encapsulate hydrophilic drugs for delivery applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Here we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water‐soluble A blocks consisting of N,N‐dimethylacrylamide and pH‐responsive B blocks of N,N‐dimethylvinylbenzylamine. To our knowledge, this represents the first example of an acrylamido–styrenic block copolymer prepared directly in a homogeneous aqueous solution. The best blocking order [with poly(N,N‐dimethylacrylamide) as a macro‐chain‐transfer agent] yielded well‐defined block copolymers with minimal homopolymer impurities. The reversible aggregation of these block copolymers in aqueous media was studied with 1H NMR spectroscopy and dynamic light scattering. Finally, an example of core‐crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1724–1734, 2004  相似文献   

11.
This article extends the preparative details of a series of nonionic copolymers of acrylamide with N,N‐dimethylacrylamide, methacrylamide, and Nt‐butylacrylamide to the synthesis of cationic derivatives of these new copolymers. The described procedures gave products with cationicities of 14–26 mol %. We measured the mean squared radii of gyration and intrinsic viscosities of aqueous solutions of these products at several different pHs and NaCl concentrations to compare these values with those determined for the nonionic precursors and related commercial cationic polymers. Because the molecular weights of the examples measured varied widely, it was difficult to establish definite trends. However, the large values obtained for the mean squared radii of gyration and intrinsic viscosities, relative to the nonionic precursors of these polymers, demonstrated that the charged groups had a qualitatively greater effect on polymer extension than the nonpolar bulky groups. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2525–2535, 2001  相似文献   

12.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

14.
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Poly(ethylene glycol) (PEG) was modified with aniline groups at both the end, and then PEG‐PANI rod‐coil block polymers have been synthesized by polymerization of the aniline with the aniline‐modified PEG. FTIR, NMR, and elemental analysis provided the chemical strucutre of the as‐prepared polymers. The achiral rod‐coil copolymer could form different superstructures by means of self‐assembly when adding diethyl ether into its THF solution and the length of PANI segments is a key factor to the superstructures. AFM measurements revealed that they form spring‐like helical superstructures from the short PANI‐containing copolymers while these form fibrous helical superstructures from the longer PANI‐containing copolymer. A possible mechanism of the helical superstructures is suggested in this article and the driving force is believed the π–π stacking of the rigid segment of the copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 12–20, 2008  相似文献   

16.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

17.
Polydimethylacrylamides (PDMAs) end‐functionalized with hydrophobic groups were synthesized by the reaction of cesium salts of one‐ or two‐ended living PDMA anion with octadecanoyl and perfluorooctanoyl chlorides and with α‐phenylacrylate monomers containing an octadecyl group attached via oligooxyethylene spacers to the acrylate functionality. Size exclusion chromatography or NMR studies indicated that the end functionalizations were nearly quantitative. Reduced viscosity measurements were consistent with predominantly dimeric association of the perfluorooctanoyl‐end‐functionalized PDMAs. The association of the two‐ended, perfluorooctanoyl‐ and octadecanoyl‐functionalized polymers was more extensive and consistent with pairwise association. Furthermore, the presence of oligoethylene oxide spacers between the octadecyl and α‐phenylacrylate groups greatly enhanced the hydrophobic association of bis(octadecyl)‐end‐functionalized PDMA. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1403–1418, 2001  相似文献   

18.
Synthesis of the ABA triblock copolymer nanoparticles of poly(N,N‐dimethylacrylamide)‐block‐polystyrene‐block‐poly(N,N‐dimethylacrylamide) (PDMA‐b‐PS‐b‐PDMA) by seeded RAFT polymerization is performed, and the effect of the introduced third poly(N,N‐dimethylacrylamide) (PDMA) block on the size and morphology of the PDMA‐b‐PS‐b‐PDMA triblock copolymer nanoparticles is investigated. This seeded RAFT polymerization affords the in situ synthesis of the PDMA‐b‐PS‐b‐PDMA core‐corona nanoparticles, in which the middle solvophobic PS block forms the compacted core, and the first solvophilic PDMA block and the introduced third PDMA block form the solvated complex corona. During the seeded RAFT polymerization, the introduced third PDMA block extends, and the molecular weight of the PDMA‐b‐PS‐b‐PDMA triblock copolymer linearly increases with the monomer conversion. It is found that, the size of the PS core in the PDMA‐b‐PS‐b‐PDMA triblock copolymer core‐corona nanoparticles is almost equal to that in the precursor of the poly(N,N‐dimethylacrylamide)‐block‐polystyrene diblock copolymer core‐corona nanoparticles and it keeps constant during the seeded RAFT polymerization, and whereas the introduction of the third PDMA block leads to a crowded complex corona on the PS core. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1777–1784  相似文献   

19.
Well‐defined tertiary amine‐based pH‐responsive homopolymers and block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using 4‐cyanopentanoic acid dithiobenzoate (CPAD) as the RAFT agent for homopolymers and a poly(ethylene glycol) (PEG) macro‐RAFT agent for the block copolymers. 1H NMR and gel permeation chromatography results confirmed the successful synthesis of these homopolymers and block copolymers. Kinetics studies indicated that the formation of both the homopolymers and the block copolymers were well defined. The pKa titration experiments suggested that the homopolymers and the related block copolymers have a similar pKa. The dynamic light scattering investigation showed that all of the block copolymers underwent a sharp transition from unimers to micelles around their pKa and the hydrodynamic diameter (Dh) was not only dependent on the molecular weight but also on the composition of the block copolymers. The polymer solution of PEG‐b‐PPPDEMA formed the largest micelle compare to the PEG‐b‐PDPAEMA and PEG‐b‐PDBAEMA with a similar molecular weight. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1010–1022  相似文献   

20.
Poly(2‐(dimethylamino)ethyl methacrylate)‐b‐poly(γ‐methacryloxypropyl‐trimethoxysilane) (PDMA‐b‐PMPS) was synthesized via consecutive reversible addition‐fragmentation chain transfer (RAFT) polymerizations in 1,4‐dioxane. Subsequent micellization of the obtained amphiphilic diblock polymer in aqueous solution led to the formation of nanoparticles consisting of hydrophobic PMPS cores and well‐solvated PDMA shells. Containing tertiary amine residues, PDMA blocks in micelle coronas can spontaneously catalyze the sol–gel reactions of trimethoxysilyl groups within PMPS cores, leading to the formation of hybrid nanoparticles coated with PDMA brushes. Transmission electron microscopy (TEM) and laser light scattering (LLS) revealed the presence of monodisperse spherical hybrid nanoparticles, and the grafting density of PDMA chains at the surface of nanoparticle cores was estimated to be ~5.8 nm2/chain. PDMA brushes exhibit dual stimuli‐responsiveness, and the swelling/collapse of them can be finely tuned with solution pH and temperatures. The obtained multi‐responsive hybrid nanoparticles might find potential applications in fields such as smart devices, recyclable catalysts, and intelligent nanocarriers for drug delivery or gene transfection. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2379–2389, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号