首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behavior of thin‐film blends of polystyrene (PS) and the random copolymer poly(styrene‐co‐4‐bromostyrene) (PBS) was studied with atomic force microscopy (AFM) and small‐angle X‐ray scattering (SAXS). Phase behavior was studied as a function of the PBS and PS degree of polymerization (N), degree of miscibility [controlled via the volume fraction of bromine in the copolymer (f)], and annealing conditions. The Flory–Huggins interaction parameter χ was measured directly from SAXS as a function of temperature and scaled with f as χ = f2χS–BrS [where χS–BrS represents the segmental interaction between PS and the homopolymer poly(4‐bromostyrene)] Simulations based on the Flory–Huggins theory and χ measured from SAXS were used to predict phase diagrams for all the systems studied. The PBS/PS system exhibited upper critical solution temperature behavior. The AFM studies showed that increasing f in PBS led to progressively different morphologies, from flat topography (i.e., one phase) to interconnected structures or islands. In the two‐phase region, the morphology was a strong function of N (due to changes in mobility). A comparison of the estimated PBS volume fractions from the AFM images with the PBS bulk volume fraction in the blend suggested the encapsulation of PBS in PS, supporting the work of previous researchers. Excellent agreement between the phase diagram predictions (based on χ measured by SAXS) and the AFM images was observed. These studies were also consistent with interdiffusion measurements of PBS/PS interfaces (with Rutherford backscattering spectroscopy), which indicated that the interdiffusion coefficient decreased with increasing χ in the one‐phase region and dropped to zero deep inside the two‐phase region. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 255–271, 2002  相似文献   

2.
Atomic force microscopy was successfully applied for comprehensive nanoscale surface and bulk morphological characterization of thermoplastic elastomeric triblock copolymers: poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) having different block lengths and their clay based nanocomposites. Commercially available Cloisite®20A and octadecyl (C18) ammonium ion modified montmorillonite clay (OC) prepared in our laboratory by cation exchange reaction were used. The phase detected images in the tapping mode atomic force microscopy exhibited a well‐ordered phase separated morphology consisting of bright nanophasic domains corresponding to hard component and darker domains corresponding to softer rubbery ethylene‐co‐butylene (PEB) lamella for all the neat triblock copolymers. This lamellar morphology gave a domain width of 19–23 nm for styrenic nanophase and 12–15 nm for ethylene‐co‐butylene phase of SEBS having end to mid block length ratio of 30:70 and block molecular weights of 8800–41,200–8800. On increasing the ratio of block lengths of the polymer matrix and the selectivity of the solvent toward the blocks used for casting, the morphological features of the resultant films altered along with change in domain thickness. The phase images showed position and distribution of the brightest clay stacks in the dark‐bright contrast of the base matrix of the nanocomposite. Exfoliated and intercalated‐exfoliated morphology obtained in the case of Cloisite®20A and OC‐based SEBS nanocomposites, respectively, is further supported by X‐ ray diffraction and transmission electron microscopy studies. The lamellar thickness of the soft phases widened to 50–75 nm, where the layered clay silicates (40–54 nm in length and 4–17 nm in width) were embedded in the soft rubbery phases in the block copolymeric matrix of the nanocomposite. The marginally thicker width of the hard styrenic phases and slightly shrinked width of the soft rubbery lamella can be observed from the regions where no nanofiller is present. Distinct differences in bulk morphologies of the nanocomposites prepared in the melt and the solution processes were obtained with nanocomposites. The presence of clay particles was evident from the almost zero pull‐off and snap‐in force in the force‐distance analysis of SEBS based nanocomposite. This analysis also revealed stronger tip interaction resulting in highest contact and adhesive forces with the softer PEB region relative to the harder PS region. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 52–66, 2007  相似文献   

3.
The relationship between the dynamic crystallization conditions and surface topography of iso‐polypropylene (i‐PP) films was examined with fractal geometry. When i‐PP was crystallized from a melt at cooling rates in the range between 1 and 100 °C/min, the generated surface topography presented self‐affine behavior at least in the scale range from 0.1 to 100 μm. Moreover, the calculated roughness exponent of these surfaces increased with the cooling rate used to crystallize the samples, which meant a smoother surface at higher crystallization rates. This behavior could be qualitatively explained in terms of the temperature effect on the nucleus stability, the molecular mobility, and the surface tension. In addition, the morphology of quenched samples was analyzed, and different hypotheses were proposed to explain the unusual observed behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 646–655, 2004  相似文献   

4.
The diffusion and transport of organic solvents through crosslinked nitrile rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends have been studied. The diffusion of cyclohexanone through these blends was studied with special reference to blend composition, crosslinking systems, fillers, filler loading, and temperature. At room temperature the mechanism of diffusion was found to be Fickian for cyclohexanone–NBR/EVA blend systems. However, a deviation from the Fickian mode of diffusion is observed at higher temperature. The transport coefficients, namely, intrinsic diffusion coefficient (D*), sorption coefficient (S), and permeation coefficient (P) increase with the increase in NBR content. The sorption data have been used to estimate the activation energies for permeation and diffusion. The van't Hoff relationship was used to determine the thermodynamic parameters. The affine and phantom models for chemical crosslinks were used to predict the nature of crosslinks. The experimental results were compared with the theoretical predictions. The influence of penetrants transport was studied using dichloromethane, chloroform, and carbon tetrachloride. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1815–1831, 1999  相似文献   

5.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

6.
The lamellar organization of melt‐crystallized β‐isotactic polypropylene was studied by atomic force microscopy (AFM) after permanganic etching. Hedritic objects grown at a high crystallization temperature (140–143 °C) were investigated. Essential features of the hedritic development were revealed by the characteristic projections exposed at the sample surface. A three‐dimensional view of the morphology was obtained by AFM. Hedritic growth proceeded mainly by branching around screw dislocations resulting in new lamellae that further developed. Successive lamellar layers often diverged. Deviation from the planar lamellar habit was observed, varying with the position within the hedrite. Twisting of the lamellae also was observed occasionally in the vicinity of the screw dislocations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 672–681, 2000  相似文献   

7.
The crystallization and phase morphology of the injection‐molded isotactic polypropylene (iPP)/syndiotactic polypylenen (sPP) blends were studied, focusing on the difference between the skin layer and core layer. The distribution of crystallinity of PPs in the blends calculated based upon the DSC results shows an adverse situation when compared with that in the neat polymer samples. For 50/50 wt % iPP/sPP blend, the SEM results indicated that a dispersed structure in the skin layer and a cocontinuous structure in the core layer were observed. A migration phenomenon that the sPP component with lower crystallization temperature and viscosity move to the core layer, whereas the iPP component with higher crystallization temperature and viscosity move to the skin layer, occurred in the iPP/sPP blend during injection molding process. The phenomenon of low viscosity content migrate to the low shear zone may be due to the crystallization‐induced demixing based upon the significant difference of crystallization temperature in the sPP and iPP. This migration caused the composition inhomogeneity in the blend and influenced the accuracy of crystallinity calculated based upon the initial composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2948–2955, 2007  相似文献   

8.
Previous work showed that annealing induced the great improvement of fracture resistance of β‐iPP, relating to the decreased number of chain segments in the amorphous region. To further prove the rationality of this observation, in this work, the ethylene‐octene copolymer (POE) toughened isotactic polypropylene (iPP) blends with or without β‐phase nucleating agent (β‐NA) were adopted and the changes of microstructure and fracture resistance during the annealing process were further investigated comparatively. The results showed that, whether for the α‐phase crystalline structure (non‐nucleated) or for the β‐phase crystalline structure (β‐NA nucleated) in iPP matrix, annealing can induce the dramatic improvement of fracture resistance at a certain annealing temperature (120–140 °C for β‐NA nucleated blends whereas 120–150 °C for non‐nucleated blends). Especially, non‐nucleated blends exhibit more apparent variations in fracture resistance compared with β‐NA nucleated blends during the annealing process. The phase morphology of elastomer, supermolecular structure of matrix, the crystalline structure including the degree of crystallinity and the relative content of β‐phase, and the relaxation of chain segments were investigated to explore the toughening mechanism of the samples after being annealed. It was proposed that, even if the content of elastomer is very few, the excellent fracture resistance can be easily achieved through adjusting the numbers of chain segments in the amorphous phase by annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

9.
 The morphology of high-modulus carbon-fiber (HM-CF) reinforced isotactic polypropylene (iPP) was investigated for the first time by atomic force microscopy (AFM) using chemically etched specimens. The images exhibited α-transcrystalline morphology for samples crystallized from quiescent melts, nucleated by HM-CF. In melts sheared by fiber pulling, αβ-cylindritic columnar morphology was observed in agreement with earlier thermo-optical studies. AFM images in the interfacial region of the β-cylindrites unveiled fine morphological details of α-row nuclei. Based on the observations, we concluded that in β-cylindrites, the lamellar growth in α-row nuclei occurs during epitaxial crystallization on bundles of extended iPP chains which form during shearing of the polymer matrix by fiber pull. Received: 25 June 1996 Accepted: 17 October 1996  相似文献   

10.
Binary blends of linear low density polyethylene (PE) and polypropylene (PP), and ternary blends of PE, PP, and EP copolymer (EPR) were prepared in a finely mixed state. In all blends the ratio of PP to PE was 85/15. In some of the blends, the PE component was labeled with a fluorescent dye; in other blends, the EPR component was labeled. These blends were investigated by laser scanning confocal fluorescence microscopy [LCFM] as a function of annealing time as well as EPR compatibilizer content. In this way we were able to follow the evolution of sample morphology and the location of the EPR in the blends. The presence of EPR in the blends retards the growth of droplets of the dispersed PE phase. When EPR was added in amounts up to 5 wt %, it tended to cover the PE droplets in patches rather than form a true core-shell structure. In the LCFM images, the EPR/PP interface appeared sharper than the EPR/PE interface. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 979–991, 1997  相似文献   

11.
Supertough poly(butylene terephthalate) (PBT)‐based blends were obtained by the melt blending of PBT with 0–30 wt % poly(ethylene‐co‐glycidyl methacrylate) (EGMA). The reaction between PBT and EGMA was detected by torque measurements. The particle size was almost constant with increasing EGMA content, and this indicated that compatibilization occurred. The minimum EGMA content for achieving supertoughness (i.e., an impact strength 16 times greater than that of PBT) was 20 wt %. The interparticle distance was the parameter controlling toughness in these PBT/EGMA blends. The dependence of the critical interparticle distance (τc) on the modulus of the dispersed phase appeared only at low τc values, and the primary dependence of τc on the ratio of the modulus of the matrix to the modulus of the rubbery dispersed phase was proposed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2236–2247, 2003  相似文献   

12.
The characterization of the mechanical nonlinear behavior of isotactic polypropylene/ethylene‐1‐hexene copolymer blends with various kinds of morphology was carried out using a nonlinear constitutive equation in which the plastic deformation and the anharmonicity of elastic response are taken into account. It was found that the mechanical nonlinearity of the incompatible blends showing phase separation is much greater than that of the compatible blends having rubbery components in the interlamellar regions. Moreover, the mechanical behavior is governed by the plastic deformation for the incompatible blends, whereas the anharmonicity strongly affects the mechanical behavior for the compatible blends. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1513–1521, 1999  相似文献   

13.
《先进技术聚合物》2018,29(1):417-423
We developed novel polypropylene (PP)/silica nanocomposites using PP and silica nanospheres (SNSs) combined with poly(5‐hexen‐1‐ol‐co‐propylene) (PPOH), which is a functionalized PP containing hydroxyl groups that was assumed to play a role as not only an elastomer but also an interface modifier. Since the affinity between the PP matrix and silica filler was expected to be improved by blending with PPOH, its influence on the mechanical properties, structure, and toughness of the ternary composites was examined in detail to provide a better understanding of the role of the matrix‐filler affinity on the mechanical properties. The dispersity of the SNSs in the fabricated PP/PPOH/SNS nanocomposite was improved by increasing the hydroxyl group content of PPOH due to the enhanced affinity between PPOH and the SNSs. The SNSs in the composite with PPOH containing 6.4 mol% hydroxyl groups (PPOH6.4) were almost dispersed in the microscale domain, while the SNSs in the composite with 1.3 mol% hydroxy groups (PPOH1.3) were considerably aggregated. The toughness of the nanocomposite was noticeably improved by blending PPOH6.4 without a significant loss of stiffness. In contrast, the toughness was hardly improved using PPOH1.3. Therefore, both the fine dispersion of the SNSs and the excellent affinity between PPOH6.4 and the SNSs contributed to the good balance of toughness and stiffness of the PP/PPOH/SNS nanocomposite.  相似文献   

14.
The preparation and characterization of macromolecular nanostructures possessing an amphiphilic core–shell morphology with a hydrophobic, fluidlike core domain with a low glass‐transition temperature are described. The nanostructures were prepared by the self‐assembly of polyisoprene‐b‐poly(acrylic acid) diblock copolymers into polymer micelles, followed by crosslinking of the hydrophilic shell layer via condensation between the acrylic acid functionalities and 2,2′‐(ethylenedioxy)bis(ethylamine), in the presence of 1‐(3′‐dimethylaminopropyl)‐3‐ethylcarbodiimide methiodide. The properties of the resulting shell‐crosslinked knedel‐like (SCK) nanoparticles were dependent on the microstructure and properties of the polyisoprene core domain. SCKs containing polyisoprene with a mixture of 3,4‐ and 1,2‐microstructures underwent little shape distortion upon adsorption from aqueous solutions onto mica or graphite. In contrast, when SCKs were composed of polyisoprene of predominantly cis‐1,4‐repeat units, the glass‐transition temperature was ?65 °C, and the nanospheres deformed to a large extent upon adsorption onto a hydrophilic substrate (mica). Adsorption onto graphite gave a less pronounced deformation, as determined by a combination of transmission electron microscopy and atomic force microscopy. Subsequent crosslinking of the core domain (in addition to the initial shell crosslinking) dramatically reduced the fluid nature and, therefore, reduced the SCK shape change. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1659–1668, 2003  相似文献   

15.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

16.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Nucleation of crystallization of isotactic polypropylene (iPP) and polyoxymethylene (POM) with dispersed submicron particles of another polymer - poly(tetrafluoroethylene) (PTFE) was studied. The polymers were mixed with various contents of PTFE particles, in the range from 0.005 to 0.5 wt.%. iPP and POM with PTFE particles are all-polymer systems with enhanced nucleation of crystallization. PTFE particles with sizes below 300 nm added to POM and iPP efficiently decreased sizes of polycrystalline aggregates. Moreover, nonisothermal crystallization temperature of iPP by increased by up to 14 °C. iPP and POM with PTFE exhibited the elastic modulus slightly higher, by up to 10-13%, than that of the neat polymers. Other mechanical properties remained unchanged, with the exception of reduced elongation at break of POM with PTFE.  相似文献   

18.
Semiconductor quantum dots (QDs) can be used as alternative for transition metal complexes to harvest the nonemissive triplet excitons in organic light‐emitting diodes (OLEDs). In search for a QD‐based OLED material generating blue emission, poly(9‐vinylcarbazole) (PVK) and poly(9‐(2,3‐epoxypropyl) carbazole) (PEPK) are chosen as host for blue‐emitting CdSe/ZnS core/shell QDs. The QDs are encapsulated with 16‐(N‐carbazolyl) hexadecanoic acid (C16), a ligand terminated by a carbazole moiety. As alternative for PVK, PEPK, where the lower molecular weight and less extensive excimer formation could promise a better film formation and more extensive exciton hopping, is explored. The efficiencies of singlet ( ) and triplet ( ) energy transfer to the C16 capped QDs are estimated by combining stationary photoluminescence spectra and fluorescence decays of pristine polymer films with those of polymer films doped with the QDs. At a loading of 30 wt % of the QDs, increases from 12 ± 1% in PVK to 41 ± 2% in PEPK while increases from 37 ± 22% in PVK to 72 ± 48% in PEPK. The investigation of the film morphology by atomic force microscopy confirms that the main factor limiting the triplet transfer efficiency in the PVK matrix is the clustering of the C16 capped QDs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 539–551  相似文献   

19.
A nanoscale characterization of modified and unmodified polypropylene (PP) microtubes internal surface was performed to investigate their structural, chemical, and physical properties. Nanoroughness, stiffness, elasticity, attraction behavior, adhesion forces, and chemical environment were investigated to test some manufacturer statements regarding Axygen MAXYMum Recovery® products. They announced that this class of material presented special features, originated from a modification to the original PP resin and by using a diamond polished mould, providing lower retention and minor interference on laboratorial tests, such as low roughness and little interaction tendency. Then, in this study, modified and control internal surfaces of PP microtubes were compared by atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Nanoroughness and force spectroscopy parameters assessed by atomic force microscopy showed out as a sensible and high‐resolution technique, crucial to discriminate differences between the surfaces. This type of investigation can be considered as a promising approach that can be applied to other polymeric systems, considering nanoscale properties, physical/chemical modifications, and as an alternative route for quality control checking concerning polymeric surfaces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(8):2344-2351
The recycled polypropylene/recycled high‐impact polystyrene (R‐PP/R‐HIPS) blends were melt extruded by twin‐screw extruder and produced by injection molding machine. The effects of polystyrene‐b‐poly(ethylene/propylene)‐b‐polystyrene copolymer (SEPS) used as compatibilizer on the mechanical properties, morphology, melt flow index, equilibrium torque, and glass transition temperature (Tg) of the blends were investigated. It was found that the notch impact strength and the elongation at break of the R‐PP/R‐HIPS blends with the addition of 10 wt% SEPS were 6.46 kJ/m2 and 31.96%, which were significantly improved by 162.46% and 57.06%, respectively, than that of the uncompatibilized blends. Moreover, the addition of SEPS had a negligible effect on the tensile strength of the R‐PP/R‐HIPS blends. Additionally, the morphology of the blends demonstrated improved distribution and decreased size of the dispersed R‐HIPS phase with increasing the SEPS content. The increase of the melt flow index and the equilibrium torque indicated that the viscosity of the blends increased when the SEPS was incorporated into the R‐PP/R‐HIPS blends. The dynamic mechanical properties test showed that when the content of SEPS was 10 wt%, the difference of Tg decreased from 91.72°C to 81.51°C. The results obtained by differential scanning calorimetry were similar to those measured by dynamic mechanical properties, indicating an improved compatibility of the blends with the addition of SEPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号