首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In previous studies, we found that Young's moduli of quenched isotactic polypropylene/high‐density polyethylene (iPP/HDPE) exceeded the upper bound, calculated from the Voigt model, with the moduli of the quenched homopolymers as those of the two components. We suggested that this might be due to crystallization, as the components crystallized at higher temperatures in the blend than on their own. We repeated the same set of measurements, this time on iPP/HDPE blends that were cooled slowly. We also examined crystallization at various rates of cooling with differential scanning calorimetry. At slow cooling rates, the HDPE and iPP components in the blends crystallize at lower temperatures than in the pure homopolymers, suggesting that the presence of one component inhibits rather than promotes the crystallization of the other. Electron microscopy of slowly cooled blends revealed very different interfacial morphologies depending on whether the HDPE or the iPP crystallizes first. Young's moduli of most of the blends lie on the upper bound; however, some blends with co‐continuous morphologies fall well below the lower bound. The mechanical properties are discussed in terms of the interfacial morphology, the crystallization behavior, and the large‐scale phase separation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1384–1392, 2003  相似文献   

2.
Several blends, covering the entire range of compositions, of a metallocenic ethylene‐1‐octene copolymer (CEO) with a multiphasic block copolymer, propylene‐b‐(ethylene‐co‐propylene) (CPE) [composed of semicrystalline isotactic polypropylene (iPP) and amorphous ethylene‐co‐propylene segments], have been prepared and analyzed by differential scanning calorimetry, X‐ray diffraction, optical microscopy, stress‐strain and microhardness measurements, and dynamic mechanical thermal analysis. The results show that for high CEO contents, the crystallization of the iPP component is inhibited and slowed down in such a way that it crystallizes at much lower temperatures, simultaneously with the crystallization of the CEO crystals. The mechanical results suggest very clearly the toughening effect of CEO as its content increases in the blends, although it is accompanied by a decrease in stiffness. The analysis of the viscoelastic relaxations displays, first, the glass transition of the amorphous blocks of CPE appearing at around 223 K, which is responsible for the initial toughening of the plain CPE copolymer in relation to iPP homopolymer. Moreover, the additional toughening due to the addition of CEO in the blends is explained by the presence of the β relaxation of CEO that appears at about 223 K. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1869–1880, 2002  相似文献   

3.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

4.
The in situ microfibrillar blend of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) was fabricated through a slit die extrusion, hot stretch, and quenching process. The morphological observation indicates that while the unstretched blend appears to be a common incompatible morphology, the hot stretched blends present PET in situ fibers whose characteristics, such as diameter and aspect ratio, are dependent on the hot stretching ratio (HSR). When the HSR is low, the elongated dispersed phase particles are not uniform at all. As the HSR is increased to 16.1, well‐defined PET microfibers were generated in situ, whose diameter is rather uniform and is around 0.6 ~ 0.9 μm. The presence of the PET phase shows significant nucleation ability for crystallization of iPP. Higher HSR corresponds to faster crystallization of the iPP matrix, while as HSR is high up to a certain level, its variation has little influence on the onset and maximum crystallization temperatures of the iPP matrix during cooling from melt. Optical microscopy observation reveals that transcrystalline layers form in the microfibrillar blend, in which the PET microfibers play as the center row nuclei. In the as‐stretched microfibrillar blends, small‐angle X‐ray scattering measurements show that matrix iPP lamellar crystals have the same orientation as PET lamella. The long period of lamellar crystals of iPP is not affected by the presence of PET micofibers. Wide‐angle X‐ray scattering reveals that the β phase of iPP is obtained in the as‐stretched blends, whose concentration increases with the increase of the HSR. This suggests that finer PET microfibers can promote the occurrence of the β phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4095–4106, 2004  相似文献   

5.
The structure–property relationships of isotactic polypropylene (iPP)/styrenic block copolymer blends filled with talc were examined by optical and scanning electron microscopy, wide‐angle X‐ray diffraction, and tensile‐ and impact strength measurements. The composites were analyzed as a function of the poly(styrene‐b‐ethylene‐co‐propylene) diblock copolymer (SEP) and the poly(styrene‐b‐butadiene‐b‐styrene) triblock copolymer (SBS) content in the range from 0 to 20 vol % as elastomeric components and with 12 vol % of aminosilane surface‐treated talc as a filler. Talc crystals incorporated in the iPP matrix accommodated mostly plane‐parallel to the surface of the samples and strongly affected the crystallization process of the iPP matrix. The SBS block copolymer disoriented plane‐parallel talc crystals more significantly than the SEP block copolymer. The mechanical properties depended on the final phase morphology of the investigated iPP blends and composites and supermolecular structure of the iPP matrix because of the interactivity between their components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1255–1264, 2004  相似文献   

6.
Immiscible blends of cellulose acetate butyrate (CAB) and isotactic polypropylenes (iPPs) with different melting index were extruded through a two‐strand rod die. The extrudates were hot‐drawn at the die exit at different draw ratios by controlling the drawing speed. The morphologies of iPP fibers extracted from the as‐obtained extrudates after removal of CAB by acetone were investigated by scanning electron microscopy. The influences of draw ratio, viscosity ratio, and composition ratio of CAB/iPP on the morphology evolution of iPP phase into nanofibers in the immiscible blends were studied. It was found that the thermoplastic iPP nanofibers were formed from the elongation of iPP ellipsoids, end‐to‐end merging of elongated iPP microfibers, and the size decrease of iPP microfibers in the processes of extrusion and drawing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 921–931, 2010  相似文献   

7.
A blend of high‐density polyethylene and an elastomeric poly(ethylene‐co‐1‐octene) resin, containing 25 mol % octene and long‐chain branching, was phase‐separated in the melt under quiescent conditions. After melt flow, the blend had fine globular or interconnected phase morphologies that were interpreted as originating from the various stages of coarsening after liquid–liquid phase separation through spinodal decomposition. It was inferred that the miscibility of the blend was enhanced under melt flow. After cessation of flow, concurrent liquid–liquid and solid–liquid phase separation took place, resulting in the formation of an interpenetrating morphology comprising amorphous polyethylene, copolymer, and crystalline polyethylene. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 380–389, 2001  相似文献   

8.
Over the last 10 years, research into co‐continuous polymer blends has been intense. Despite these efforts, there are very few detailed studies on the stability of this complex morphology. In this work, blends of poly(ε‐caprolactone) and polystyrene were melt‐mixed in an internal mixer for time intervals of 0.5–120 min at set temperatures of 140 and 170 °C, and the effect of the mixing time on the co‐continuous morphology was studied. This blend system was chosen because each component could be selectively dissolved and this allowed for a complete study of the co‐continuous region. The phase continuity was measured with a solvent‐extraction gravimetric technique, and the concentration range for co‐continuity was determined. The phase size and phase size distribution were obtained with the mercury intrusion porosimetry technique. The results indicate that the co‐continuous morphology forms very early in the mixing process and achieves a stable morphology within the first 5 min of mixing for virtually all the co‐continuous compositions. For all cases studied, the co‐continuous morphology remains unchanged over mixing times as long as 1–2 h. These results support the notion of a stable steady‐state formation of co‐continuous morphologies during melt mixing similar to that observed for matrix/dispersed phase type blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 864–872, 2007  相似文献   

9.
In this work, as a part of a long‐term project aimed at controlling of crystal structure and phase morphology for a injection molded product, we investigated the oriented structure and possible epitaxial growth of polyolefin blend (low‐density polyethylene (LLDPE)/isotatic polypropylene (iPP)), achieved by dynamic packing injection molding, which introduced strong oscillatory shear on the gradually‐cooled melt during the packing process. The crystalline and oriented structures of the prepared blends with different compositions were estimated in detail through 2D X‐ray diffraction, calorimetry, and optical microscopy. As iPP was the dominant phase (its content was more than 50 wt%), our results indicated that it could be highly oriented in the blends. In such case, it was interesting to find that LLDPE epitaxially crystallized on the oriented iPP through a crystallographic matching between (100)LLDPE and (010)iPP, resulting in an inclination of LLDPE chains, about 50° to the iPP chain axis. On the other hand, as iPP was the minor phase, iPP was less oriented and no epitaxial growth between iPP and LLDPE was observed; even LLDPE remained oriented. The composition‐dependent epitaxial growth of LLDPE on oriented iPP could be understood as due to: (1) the effect of crystallization sequence, it was found that iPP always crystallized before LLDPE for all compositions; (2) the dependence of oriented iPP structure on the blend composition; (3) the “mutual nucleation” between LLDPE and iPP due to their partial miscibility. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The compatibility behavior of polyetherether ketone (PEEK) with poly(ether sulfone) (PES) has been reexamined using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and extrudate swell measurements. The blends were prepared by both melt‐blending and solution‐blending techniques. The phase behavior of blends is strongly affected by the blending technique used. Blends prepared by solution‐blending are compatible in the entire composition range on the basis of the single composition‐dependent glass transitions and exhibit lower critical solution temperature (LCST) behavior. LCST was near 340 °C around which the crystalline melting point of PEEK exists. Near LCST melting‐induced movement of molecular chains disturbs the initial homogeneous state of the solution blends and leads to a phase‐separated state that is thermodynamically more stable in the absence of strong specific interactions between the homopolymers. Contrary to the solution‐blended samples, melt‐blended samples were in the phase‐separated state even at a lower processing temperature of 300 °C. Two glass transitions corresponding to a PEEK‐rich and a PES‐rich phase were found for all compositions. From the measured glass transition of phase‐separated blends, weight fractions of PES and PEEK dissolved in each phase were determined using the Fox equation. Compatibility is greater in the PEEK‐rich compositions than in the PES‐rich compositions. PEEK dissolves more in PES‐rich phases than does PES in the PEEK‐rich phase. Variation of the specific heat increment (ΔCp) at the glass transition with composition also supports these inferences. Solution‐blended samples, quenched from 380 °C, also indicated similar behavior but were slightly more compatible. The aforementioned results are consistent with those inferred from SEM studies and extrudate swell measurements that show a greater compatibility in PEEK‐rich compositions than in PES‐rich compositions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1407–1424, 2002  相似文献   

11.
Summary: Shear‐induced crystallization in a blend of isotactic poly(propylene) and poly(ethylene‐co‐octene) (iPP/PEOc) has been investigated by means of in‐situ optical microscopy and a shear hot stage under various thermal and shear histories. Cylindrites are observed after shear in the phase‐separated iPP/PEOc blends for the first time. The nuclei (shish) come from the orientation of the entangled network chains, and the relationship between the shear rate and the network relaxation time of the oriented iPP chains is a very important factor that dominates the formation of the cylindrites after liquid‐liquid phase separation. The cylindrites can grow through phase‐separated domains with proper shear rate and shear time. In addition, the number of spherulites increases with shear rate, which is consistent with the notion of fluctuation‐induced nucleation/crystallization.

Phase‐contrast optical micrograph of the iPP/PEOc = 50/50 (wt.‐%) sample sheared during cooling with shear rate of 10 s−1 and isothermally crystallized at 140 °C for 142 s after isothermal annealing at 170 °C for 420 min. The shear time is 180 s.  相似文献   


12.
This article reports crystallization behaviors of isotactic polypropylene (iPP) with an aryl amide derivative (TMB‐5) as β‐form nucleating agent. The effects of nucleating agent concentration, thermal history and assemble morphology of nucleating agent on the crystallization behaviors of iPP were studied by differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy. The results indicated that the TMB‐5 concentration should surpass a threshold value to get products rich in β‐iPP. The diverse morphologies of TMB‐5 are determined by nucleating agent concentration and crystallization condition. At higher concentrations, the recrystallized TMB‐5 aggregates into needle‐like structure, which induces mixed polymorphic phases on the lateral surface and large amount of β modification around the tip. High β nucleation efficiency was obtained at the lowest studied crystallization temperature, which is desirable for real molding process. TMB‐5 prefers to recrystallize from the melt at higher concentration and lower crystallization temperature. The difference in solubility, pertinent to concentration and crystallization temperature, determined the distinct crystallization behaviors of iPP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1725–1733, 2008  相似文献   

13.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

14.
PS‐b‐PCL block copolymer is used to study its influence on the phase evolution of epoxy resin/polyetherimides (PEI) blends cured with methyl tetrahydrophthalic anhydride. The effect of PS‐b‐PCL on the reaction‐induced phase separation of the thermosetting/thermoplastic blends is studied via optical microscopy, scanning electron microscope, and time‐resolved light scattering. The results show that secondary phase separation and typical phase inverted morphologies are obtained in the epoxy/PEI blends with addition of PS‐b‐PCL. It can be attributed to the preferential location of the PS‐b‐PCL in the epoxy‐rich phase, which enhances the viscoelastic effect of epoxy/PEI system and leads to a dynamic asymmetry system between PEI and epoxy. The PS‐b‐PCL block copolymer plays a critical role on the balance of the diffusion and geometrical growth of epoxy molecules. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1395–1402  相似文献   

15.
Conventional melt transesterification successfully produced high‐molecular‐weight segmented copolyesters. A rigid, high‐Tg polyester precursor containing the cycloaliphatic monomers, 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol, and dimethyl‐1,4‐cyclohexane dicarboxylate allowed molecular weight control and hydroxyl difunctionality through monomer stoichiometric imbalance in the presence of a tin catalyst. Subsequent polymerization of a 4000 g/mol polyol with monomers comprising the low‐Tg block yielded high‐molecular‐weight polymers that exhibited enhanced mechanical properties compared to a nonsegmented copolyester controls and soft segment homopolymers. Reaction between the polyester polyol precursor and a primary or secondary alcohol at melt polymerization temperatures revealed reduced transesterification of the polyester hard segment because of enhanced steric hindrance adjacent to the ester linkages. Differential scanning calorimetry, dynamic mechanical analysis, and tensile testing of the copolyesters supported the formation of a segmented multiblock architecture. Further investigations with atomic force microscopy uncovered unique needle‐like, interconnected, microphase separated surface morphologies. Small‐angle X‐ray scattering confirmed the presence of microphase separation in the segmented copolyesters bulk morphology. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The structure, morphology, and isothermal and nonisothermal crystallization of isotactic polypropylene/low‐molecular‐mass hydrocarbon resin blends (iPP/HR) (up to 20% in weight of HR) have been studied, using optical and electron microscopy, wide‐ and small‐angle X‐ray and differential scanning calorimetry. New structures and morphologies can be activated, using appropriate preparation and crystallization conditions and blend composition. For every composition and crystallization condition, iPP crystallizes in α‐form, with a spherulitic morphology. The size of iPP spherulites increases with resin content, whereas the long period decreases. In the range of crystallization temperatures investigated, HR modifies the birefringence of iPP spherulites, favoring the formation of radial lamellae and changing the ratio between tangential and radial lamellae. Spherulitic radial growth rates, overall crystallization rates, and melting temperatures are strongly affected by resin, monotonically decreasing with resin content. This confirms miscibility in the melt between the two components of the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3368–3379, 2004  相似文献   

17.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHB‐HHx) and methoxy poly(ethylene glycol) (MPEG) blends were prepared using melt blending. The single glass transition temperature, Tg, between the Tgs of the two components and the negative χ value indicated that PHB‐HHx and MPEG formed miscible blends over the range of compositions studied. The Gordon–Taylor equation proved that there was an interaction between PHB‐HHx and MPEG in their blends. FTIR supported the presence of hydrogen bonding between the hydroxyl group of MPEG and the carbonyl group of PHB‐HHx. The spherulitic morphology and isothermal crystallization behavior of the miscible PHB‐HHx/MPEG blends were investigated at two crystallization temperatures (70 and 40 °C). At 70 °C, melting MPEG acted as a noncrystalline diluent that reduced the crystallization rate of the blends, while insoluble MPEG particles acted as a nucleating agent at 40 °C, enhancing the crystallization rate of the blends. However, no interspherulitic phase separation was observed at the two crystallization temperatures. The constant value of the Avrami exponent demonstrated that MPEG did not affect the three‐dimensional spherulitic growth mechanism of PHB‐HHx crystals in the blends, although the MPEG phase, such as the melting state or insoluble state, influenced the crystallization rate of the blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2852–2863, 2006  相似文献   

18.
Compositional profiles of bilayer films in the direction normal to the interfaces have been investigated by neutron reflectivity measurements and analyzed with mean field theory. The bilayer films were prepared with poly(4‐trimethylsilylstyrene) (PTMSS) and polyisoprene (PI), which constitute a miscible polymer pair and whose blends show phase separation at the lower critical solution temperature (LCST) by heating. Because we can accurately control the degree of polymerization of component polymers and can adjust the Flory–Huggins interaction parameter, χ, with the temperature, T, according to the relationship χ = 0.027–9.5/T, the phase behavior and the interfacial structure of PTMSS and PI are predictable by mean field theory. When the bilayer films of PTMSS and PI were set at 90 °C, which is a temperature below the LCST, diffusion at the interface was observed, and the original interface disappeared in several hours; this supports the idea that the polymer pair is miscible. No clear interfaces were identified below the LCST, whereas broad interfaces, compared with that of the strong segregation pairs, were observed above the LCST. The compositions of each layer are consistent with that of the coexisting phase in the polymer blends, and the interfacial widths agree well with the theoretical prediction considering the effect of capillary waves. In addition, all annealed films have a thin surface layer of PTMSS corresponding to surface segregation induced by the lower surface energy of PTMSS (with respect to that of PI). Thus, the interfacial profiles of PTMSS/PI bilayer films have been totally prospected in the framework of mean field theory. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1486–1494, 2005  相似文献   

19.
The crystallization behavior of isotactic propylene‐1‐hexene (PH) random copolymer having 5.7% mole fraction of hexene content was investigated using simultaneous time‐resolved small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For this copolymer, the hexene component cannot be incorporated into the unit cell structure of isotactic polypropylene (iPP). Only α‐phase crystal form of iPP was observed when samples were melt crystallized at temperatures of 40 °C, 60 °C, 80 °C, and 100 °C. Comprehensive analysis of SAXS and WAXD profiles indicated that the crystalline morphology is correlated with crystallization temperature. At high temperatures (e.g., 100 °C) the dominant morphology is the lamellar structure; while at low temperatures (e.g., 40 °C) only highly disordered small crystal blocks can be formed. These morphologies are kinetically controlled. Under a small degree of supercooling (the corresponding iPP crystallization rate is slow), a segmental segregation between iPP and hexene components probably takes place, leading to the formation of iPP lamellar crystals with a higher degree of order. In contrast, under a large degree of supercooling (the corresponding iPP crystallization rate is fast), defective small crystal blocks are favored due to the large thermodynamic driving force and low chain mobility. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 26–32, 2010  相似文献   

20.
The poly(hydroxy ether of bisphenol A)‐based blends containing poly(acrylontrile‐co‐styrene) (SAN) were prepared through in situ polymerization, i.e., the melt polymerization between the diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of poly(acrylontrile‐co‐styrene) (SAN). The polymerization reaction started from the initial homogeneous ternary mixture of SAN/DGEBA/bisphenol A, and the phenoxy/SAN blends with SAN content up to 20 wt % were obtained. Both the solubility behavior and Fourier transform infrared (FTIR) spectroscopy studies demonstrate that no intercomponent reaction occurred in the reactive blend system. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM) were employed to characterize the phase structure of the as‐polymerized blends. All the blends display the separate glass transition temperatures (Tg's); i.e., the blends were phase‐separated. The morphological observation showed that all the blends exhibited well‐distributed phase‐separated morphology. For the blends with SAN content less than 15 wt %, very fine SAN spherical particles (1–3 μmm in diameter) were uniformly dispersed in a continuous matrix of phenoxy and the fine morphology was formed through phase separation induced by polymerization. Mechanical tests show that the blends containing 5–15 wt % SAN displayed a substantial improvement of tensile properties and Izod impact strength, which were in marked contrast to those of the materials prepared via conventional methods. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 525–532, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号