首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
Three new compounds, CuL, CuL′, and Cu2O2L′′2 (H2L=3′‐[(E)‐{[(1S,2S)‐2‐aminocyclohexyl]imino}methyl]‐4′‐hydroxy‐4‐biphenylcarboxlic acid, H2L′=3′‐[(E)‐{[(1S,2S)‐2‐aminocyclohexyl]imino}methyl]‐4′‐hydroxy‐5′‐nitro‐4‐biphenylcarboxlic acid, H2L′′=3′‐(N,N‐dimethylamino methyl)‐4′‐hydroxy‐4‐biphenylcarboxlic acid), were selectively synthesized through a controlled in situ ligand reaction system mediated by copper(II) nitrate and H2L. Selective nitration was achieved by using different solvent mixtures under relatively mild conditions, and an interesting and economical reductive amination system in DMF/EtOH/H2O was also found. All crystal structures were determined by single‐crystal X‐ray diffraction analysis. Both CuL and CuL′ display chiral 1D chain structures, whereas Cu2O2L′′2 possesses a structure with 13×16 Å channels and a free volume of 41.4 %. The possible mechanisms involved in this in situ ligand‐controlled reaction system are discussed in detail.  相似文献   

2.
A novel two‐dimensional CoII coordination framework, namely poly[(μ2‐biphenyl‐4,4′‐diyldicarboxylato‐κ2O4:O4′){μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}cobalt(II)], [Co(C14H8O4)(C20H18N4O)]n, has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The crystal structure reveals that the compound has an achiral two‐dimensional layered structure based on opposite‐handed helical chains. In addition, it exhibits significant photocatalytic degradation activity for the degradation of methylene blue.  相似文献   

3.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

4.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

5.
A series of substituted N‐(4‐substituted‐benzoyl)‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 13 ) and N‐arylsulfonyl‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 14 ) were prepared from the reaction of 3‐(1‐methyl‐1H‐imidazol‐2‐yl)propan‐1‐amine ( 7 ) with substituted benzoyl chloride or substituted‐benzene sulfonyl chloride respectively. Compound 7 was prepared by two independent methods.  相似文献   

6.
The X‐ray crystal structures are reported of four novel and potentially O,N,S‐tridentate donor ligands that demonstrate antitumour activity. These ligands are 1‐[(4‐methyl­thio­semicarbazono)methyl]‐2‐naphthol, C13H13N3OS, (III), 1‐[(4‐ethylthio­semicarbazono)­methyl]‐2‐naphthol, C14H15N3OS, (IV), 1‐[(4‐phenyl­thio­semicarbazono)­methyl]‐2‐naphthol, C18H15N3OS, (V), and 1‐[(4,4‐di­methyl­thio­semicarbazono)­methyl]‐2‐naphthol di­methyl sulfoxide solvate, C14H15N3OS·C2H6OS, (VI). These chelators are N4‐substituted thio­semicarbazones, each based on the same parent aldehyde, namely 2‐­zhydroxynaphthalene‐1‐carboxaldehyde isonicotinoylhydrazone. Conformational variations within this series are discussed in relation to the optimum conformation for metal‐ion binding.  相似文献   

7.
The annelation of 1,2,3‐thiadiazole rings was accomplished by the reaction of N‐acylhydrazone 2a bearing an adjacent α‐methyl with thionyl chloride to give α‐chloro‐N‐methyl‐1,2,3‐thiadiazole‐4‐acetamide 4 and was demonstrated by the X‐ray crystal structure of its derivative 5a. A novel series of α‐substituted phenoxy‐N‐methyl‐1,2,3‐thiadiazole‐4‐acetamide 5 were synthesized through the reaction of the compound 4 and phenols. The results of bioassays show that the title compounds exhibit good anti‐HBV activities. The crystal of compound 5a , N‐methyl‐α‐2‐bromophenyl‐1,2,3‐thiadiazole‐4‐acetamide, has been prepared and determined by X‐ray diffraction.  相似文献   

8.
Select C(α), N‐phenylhydrazones were dilithiated in excess lithium diisopropylamide followed by condensation with methyl 2‐(aminosulfonyl)benzoate and acid cyclization to afford new pyrazol‐benzenesul‐fonamides, 2‐(1‐phenyl‐1H‐pyrazol‐5‐yl)benzenesulfonamides.  相似文献   

9.
The first two crystal structures of en­amines derived from 1‐n‐alkyl‐3‐methyl‐5‐pyrazolones, namely 1‐(n‐hexyl)‐3‐methyl‐4‐[1‐(phenyl­amino)­propyl­idene]‐2‐pyrazolin‐5‐one, C19H27N3O, (I), and N,N′‐bis{1‐[1‐(n‐hexyl)‐3‐methyl‐5‐oxo‐2‐pyrazolin‐4‐yl­idene]­ethyl}hexane‐1,6‐di­amine, C30H52N6O2, (II), are reported. The mol­ecule of (II) lies about an inversion centre. Both (I) and (II) are stabilized by intramolecular N—H⋯O hydrogen bonding. This confirms previous results based on spectroscopic evidence alone.  相似文献   

10.
In the crystal structure of the title complex, poly­[[di­azidocobalt(II)]‐di‐μ‐1,4‐bis(1,2,4‐triazol‐1‐yl­methyl)­benzene‐κ4N4:N4′], [Co(N3)2(bbtz)2]n, where bbtz is 1,4‐bis(1,2,4‐triazol‐1‐yl­methyl)­benzene (C12H12N6), the CoII atom, which lies on an inversion centre, is six‐coordinated by four N atoms from four bbtz ligands and by two N atoms from two azide ligands, in a distorted octahedral coordination environment. The CoII atoms are bridged by four bbtz ligands to form a two‐dimensional [4,4]‐network.  相似文献   

11.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

12.
The 1H and 13C nmr spectra of the rotational isomers 3a and 3b of 6‐N‐methyl‐N‐formylaminomefhyl)‐thioquinanthrene were completely assigned with a combination of 1D and 2D nmr techniques. The key‐parts of this methodology were long‐range proton‐carbon correlations and NOE experiments with N‐methyl‐N‐formylaminomethyl substituent. The X‐ray study of 4‐methyl‐2‐N‐methyl‐N‐formylaminomethyl)quinoline 4a as well as 1H and 13C nmr spectra show that N‐methyl‐N‐formylaminomethyl substituent in 4a and 4b has a different steric arrangement than the same substituent in 3a and 3b .  相似文献   

13.
As part of our interest in the synthesis and catalytic applications of chiral (diphenylphosphanyl)ferrocene ligands, we designed a number of P,N‐containing ligands for use in asymmetric transfer hydrogenation (ATH). During the synthetic procedure to obtain rac‐1‐[(N,4‐dimethylbenzenesulfonamido)methyl]‐2‐(diphenylphosphanyl)ferrocene, the title compound, [Fe(C5H5)(C26H25NO2PS)]0.55·[Fe(C5H5)(C26H25NO3PS)]0.45, was obtained as a by‐product. It is composed of a ferrocene group disubstituted by a partially oxidized diphenylphosphanyl group, as confirmed by 31P NMR analysis, and an (N,4‐dimethylbenzenesulfonamido)methyl substituent. Owing to the partially oxidized diphenylphosphanyl group, it is best to view the crystal as being composed of a mixture of non‐oxidized and oxidized phosphane, so it can be regarded as a cocrystal. It is also a racemate. To the best of our knowledge, the P=O distance [1.344 (4) Å] is the shortest observed for related (diphenylphosphoryl)ferrocene compounds. The packing is stabilized by weak C—H...O interactions, forming R22(10) hydrogen‐bonding motifs, which build up a chain along the c axis.  相似文献   

14.
程琳  应磊  杨小玲  蹇锡高 《中国化学》2005,23(2):200-203
A new monomer diacid, 1,2-dihydro-2-(4-carboxylphenyl)-4-[4-(4-carboxylphenoxy)-3-methylphenyl]phtha-lazin-1-one (3), was synthesized through the aromatic nucleophilic substitution reaction of a readily available unsymmetrical phthalazinone 1 bisphenol-like with p-chlorobenzonitrile in the presence of potassium carbonate in N,N-dimethylacetamide and alkaline hydrolysis. The diacid could be directly polymerized with various aromatic diamines 4a-4e using triphenyl phosphite and pyridine as condensing agents to give five new aromatic poly(ether amide)s 5a-5e containing the kink non-coplanar heterocyclic units with inherent viscosities of 1.30-1.54 dL/g.The polymers were readily soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethyl-acetamide (DMA), dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidinone (NMP), and even in m-cresol and pyridine (Py). The transparent, flexible and tough films could be formed by solution casting. The glass transition tem-peratures Tg were in the range of 286-317℃.  相似文献   

15.
A new crystal form of 2‐methyl‐6‐nitroaniline, C7H8N2O2, crystallizing with Z′ = 2 in the space group P21/c, has been identified during screening for salts and cocrystals. The different N—H...O hydrogen‐bonding synthons result in linear V‐shaped chains in the new polymorph, rather than the helical chain arrangement seen in the known form where Z′ = 1. The presence of a second component during crystallization appears to have determined the resultant crystal form of 2‐methyl‐6‐nitroaniline.  相似文献   

16.
The reaction of homophthalic anhydride and N‐(1‐methyl‐1H‐pyrrol‐2‐yl‐methylidene)‐benzylamine in boiling benzene afforded as a main product the expected substituted trans‐1,2,3,4‐tetrahydroisoquinoline‐4‐carboxylic acid 5 . The carboxylic group of 5 was transformed in four steps into cyclic amino‐methyl groups yielding numerous new tetrahydroisoquinolinones 11a‐j incorporating a given fragment of pharmacological interest. Reduction of 11a‐j was studied.  相似文献   

17.
Aldol reaction of 7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐one ( 1 ) with 4‐substituted α‐methylcinnamaldehydes 2 – 5 afforded a mixture of threo‐ and erythro‐3‐(3‐aryl‐1‐hydroxy‐2‐methylprop‐2‐enyl)‐7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐ones 6 – 13 . The chromatographically separated threo diastereoisomers 6, 8, 10 , and 12 and erythro diastereoisomers 7, 9, 11 , and 13 were submitted to ‘directed' homogeneous hydrogenation catalyzed by [RhI(cod)(diphos‐4)]ClO4 (cod=cycloocta‐1,5‐diene, diphos‐4=butane‐1,4‐diylbis[diphenylphosphine]. From the erythro‐racemates 9, 11 , and 13 , the erythro,erythro/erythro,threo‐diastereoisomer mixtures 16 / 17, 20 / 21 , and 24 / 25 were obtained in ratios of 20 : 80 to 28 : 72 (HPLC), which were separated by chromatography. From the threo racemates 8, 10 , and 12 , the threo,threo/threo,erythro‐diastereoisomer mixtures were obtained in a ratio of ca. 25 : 75 (1H‐NMR). The relative configurations were assigned by means of 1H‐NMR data and X‐ray crystal‐structure determination of 21 . Hydrolysis of 21 afforded the diastereoisomerically pure N‐(benzyloxy)carbonyl derivative 27 of α‐amino‐β‐hydroxy‐γ‐methylpentanoic acid 26 , representative of the novel group of polysubstituted α‐amino‐β‐hydroxycarboxylic acids.  相似文献   

18.
Stereochemical course of the reaction of homophthalic anhydride and N‐(1‐methyl‐1H‐pyrrol‐2‐yl‐methylidene)‐phenethylamine was studied. Mixtures of the expected trans‐ and cis‐1,2,3,4‐tetrahydroiso‐quinoline‐4‐carboxylic acids trans‐ 4 and cis‐ 4 were obtained along with by‐products 5 and 6 . The ratios of all products and the diastereomers, obtained under different reaction conditions, were established by pmr. THF as a solvent and ultrasonic treatment are applied for the first time in the reaction of this type. The reaction was made diastereoselective towards any isomer. The carboxylic group of trans‐ 4 was transformed in four steps into various cyclic amino‐methyl groups yielding numerous new tetrahydroisoquinolinones trans‐ 10a‐i incorporating a given fragment of pharmacological interest. Reduction of 10a‐i was studied.  相似文献   

19.
Four new Schiff bases were designed and synthesized. 5‐Methyl‐4‐(4‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 1 ) and 5‐methyl‐4‐(2‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 2 ) were synthesized by interaction of 1‐phenyl‐3‐methyl‐4‐benzoyl‐2‐pyrazolin‐5‐one (PMBP) with o‐ and p‐phenylenediamine, respectively; 4,4′‐(1,2‐phenylenebis(azanediyl)bis(phenylmethanylylidene))bis(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one) (compound 3 ) and 5‐methyl‐4‐(phenyl(2‐((3‐phenylallylidene)amino)phenylamino)methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 4 ) were synthesized by interaction of compound 2 with PMBP and cinnamaldehyde in an ethanolic medium, respectively. The molecular structures of the title compounds were first characterized by single‐crystal X‐ray diffraction, mass spectrometry, and elemental analysis. The title compounds were tested for antibacterial activity (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by disk diffusion method.  相似文献   

20.
Aminoalkanol derivatives have attracted much interest in the field of medicinal chemistry as part of the search for new anticonvulsant drugs. In order to study the influence of the methyl substituent and N‐oxide formation on the geometry of molecules and intermolecular interactions in their crystals, three new examples have been prepared and their crystal structures determined by X‐ray diffraction. 1‐[(2,6‐Dimethylphenoxy)ethyl]piperidin‐4‐ol, C15H23NO2, 1 , and 1‐[(2,3‐dimethylphenoxy)ethyl]piperidin‐4‐ol, C15H23NO2, 2 , crystallize in the orthorhombic system (space groups P212121 and Pbca, respectively), with one molecule in the asymmetric unit, whereas the N‐oxide 1‐[(2,3‐dimethylphenoxy)ethyl]piperidin‐4‐ol N‐oxide monohydrate, C15H23NO3·H2O, 3 , crystallizes in the monoclinic space group P21/c, with one N‐oxide molecule and one water molecule in the asymmetric unit. The geometries of the investigated compounds differ significantly with respect to the conformation of the O—C—C linker, the location of the hydroxy group in the piperidine ring and the nature of the intermolecular interactions, which were investigated by Hirshfeld surface and corresponding fingerprint analyses. The crystal packing of 1 and 2 is dominated by a network of O—H…N hydrogen bonds, while in 3 , it is dominated by O—H…O hydrogen bonds and results in the formation of chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号