首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The solid‐state structures of a series of seven substituted 3‐methylidene‐1H‐indol‐2(3H)‐one derivatives have been determined by single‐crystal X‐ray diffraction and are compared in detail. Six of the structures {(3Z)‐3‐(1H‐pyrrol‐2‐ylmethylidene)‐1H‐indol‐2(3H)‐one, C13H10N2O, (2a); (3Z)‐3‐(2‐thienylmethylidene)‐1H‐indol‐2(3H)‐one, C13H9NOS, (2b); (3E)‐3‐(2‐furylmethylidene)‐1H‐indol‐2(3H)‐one monohydrate, C13H9NO2·H2O, (3a); 3‐(1‐methylethylidene)‐1H‐indol‐2(3H)‐one, C11H11NO, (4a); 3‐cyclohexylidene‐1H‐indol‐2(3H)‐one, C14H15NO, (4c); and spiro[1,3‐dioxane‐2,3′‐indolin]‐2′‐one, C11H11NO3, (5)} display, as expected, intermolecular hydrogen bonding (N—H...O=C) between the 1H‐indol‐2(3H)‐one units. However, methyl 3‐(1‐methylethylidene)‐2‐oxo‐2,3‐dihydro‐1H‐indole‐1‐carboxylate, C13H13NO3, (4b), a carbamate analogue of (4a) lacking an N—H bond, displays no intermolecular hydrogen bonding. The structure of (4a) contains three molecules in the asymmetric unit, while (4b) and (4c) both contain two independent molecules.  相似文献   

2.
5‐Benzylamino‐3‐tert‐butyl‐1‐phenyl‐1H‐pyrazole, C20H23N3, (I), and its 5‐[4‐(trifluoromethyl)benzyl]‐, C21H22F3N3, (III), and 5‐(4‐bromobenzyl)‐, C20H22BrN3, (V), analogues, are isomorphous in the space group C2/c, but not strictly isostructural; molecules of (I) form hydrogen‐bonded chains, while those of (III) and (V) form hydrogen‐bonded sheets, albeit with slightly different architectures. Molecules of 3‐tert‐butyl‐5‐(4‐methylbenzylamino)‐1‐phenyl‐1H‐pyrazole, C21H25N3, (II), are linked into hydrogen‐bonded dimers by a combination of N—H...π(arene) and C—H...π(arene) hydrogen bonds, while those of 3‐tert‐butyl‐5‐(4‐chlorobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22ClN3, (IV), form hydrogen‐bonded chains of rings which are themselves linked into sheets by an aromatic π–π stacking interaction. Simple hydrogen‐bonded chains built from a single N—H...O hydrogen bond are formed in 3‐tert‐butyl‐5‐(4‐nitrobenzylamino)‐1‐phenyl‐1H‐pyrazole, C20H22N4O2, (VI), while in 3‐tert‐butyl‐5‐(3,4,5‐trimethoxybenzylamino)‐1‐phenyl‐1H‐pyrazole, C23H29N3O3, (VII), which crystallizes with Z′ = 2 in the space group P, pairs of molecules are linked into two independent centrosymmetric dimers, one generated by a three‐centre N—H...(O)2 hydrogen bond and the other by a two‐centre N—H...O hydrogen bond.  相似文献   

3.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

4.
5.
The structures are reported of nine closely related tetrahydro‐1,4‐epoxy‐1‐benzazepines carrying pendant heterocyclic substituents, namely: 2‐exo‐(5‐nitrofuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C14H12N2O4, (I), 7‐fluoro‐2‐exo‐(1‐methyl‐1H‐pyrrol‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H15FN2O, (II), 7‐fluoro‐2‐exo‐(5‐methylfuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNO2, (III), 7‐fluoro‐2‐exo‐(3‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNOS, (IV), 7‐fluoro‐2‐exo‐(5‐methylthiophen‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14FNOS, (V), 7‐chloro‐2‐exo‐(5‐methylfuran‐2‐yl)‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H14ClNO2, (VI), 2‐exo‐(5‐methylfuran‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C16H14F3NO3, (VII), 2‐exo‐(3‐methylthiophen‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C16H14F3NO2S, (VIII), and 2‐exo‐(5‐nitrofuran‐2‐yl)‐7‐trifluoromethoxy‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1H‐1‐benzazepine, C15H11F3N2O5, (IX). All nine compounds crystallize in centrosymmetric space groups as racemic mixtures with configuration (2RS,4SR). There are no direction‐specific interactions between the molecules in (V). The molecules in (III), (IV), (VI) and (VII) are linked into simple chains, by means of a single C—H...O hydrogen bond in each of (III), (VI) and (VII), and by means of a single C—H...π(arene) hydrogen bond in (IV), while the molecules in (VIII) are linked into a chain of rings. In each of (I) and (II), a combination of one C—H...O hydrogen bond and one C—H...π(arene) hydrogen bond links the molecules into sheets, albeit of completely different construction in the two compounds. In (IX), the sheet structure is built from a combination of four independent C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. Comparisons are made with some related compounds.  相似文献   

6.
The structures of five metal complexes containing the 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate dianion illustrate the remarkable coordinating versatility of this ligand and the great structural diversity of its complexes. In tetraaquaberyllium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate, [Be(H2O)4](C7H2O6), (I), the ions are linked by eight independent O—H...O hydrogen bonds to form a three‐dimensional hydrogen‐bonded framework structure. Each of the ions in hydrazinium(2+) diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)calcate, (N2H6)[Ca(C7H2O6)2(H2O)2], (II), lies on a twofold rotation axis in the space group P2/c; the anions form hydrogen‐bonded sheets which are linked into a three‐dimensional framework by the cations. In bis(μ‐4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)bis[tetraaquamanganese(II)] tetrahydrate, [Mn2(C7H2O6)2(H2O)8]·4H2O, (III), the metal ions and the organic ligands form a cyclic centrosymmetric Mn2(C7H2O6)2 unit, and these units are linked into a complex three‐dimensional framework structure containing 12 independent O—H...O hydrogen bonds. There are two independent CuII ions in tetraaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)copper(II), [Cu(C7H2O6)(H2O)4], (IV), and both lie on centres of inversion in the space group P; the metal ions and the organic ligands form a one‐dimensional coordination polymer, and the polymer chains are linked into a three‐dimensional framework containing eight independent O—H...O hydrogen bonds. Diaqua(4‐oxo‐4H‐pyran‐2,6‐dicarboxylato)cadmium monohydrate, [Cd(C7H2O6)(H2O)2]·H2O, (V), forms a three‐dimensional coordination polymer in which the organic ligand is coordinated to four different Cd sites, and this polymer is interwoven with a complex three‐dimensional framework built from O—H...O hydrogen bonds.  相似文献   

7.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

8.
The room‐temperature crystal structures of four new thio derivatives of N‐methylphenobarbital [systematic name: 5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trione], C13H14N2O3, are compared with the structure of the parent compound. The sulfur substituents in N‐methyl‐2‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2‐thioxo‐1,2‐dihydropyrimidine‐4,6(3H,5H)‐dione], C13H14N2O2S, N‐methyl‐4‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐4‐thioxo‐3,4‐dihydropyrimidine‐2,6(1H,5H)‐dione], C13H14N2O2S, and N‐methyl‐2,4,6‐trithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trithione], C13H14N2S3, preserve the heterocyclic ring puckering observed for N‐methylphenobarbital (a half‐chair conformation), whereas in N‐methyl‐2,4‐dithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2,4‐dithioxo‐1,2,3,4‐tetrahydropyrimidine‐6(5H)‐one], C13H14N2OS2, significant flattening of the ring was detected. The number and positions of the sulfur substituents influence the packing and hydrogen‐bonding patterns of the derivatives. In the cases of the 2‐thio, 4‐thio and 2,4,6‐trithio derivatives, there is a preference for the formation of a ring motif of the R22(8) type, which is also a characteristic of N‐methylphenobarbital, whereas a C(6) chain forms in the 2,4‐dithio derivative. The preferences for hydrogen‐bond formation, which follow the sequence of acceptor position 4 > 2 > 6, confirm the differences in the nucleophilic properties of the C atoms of the heterocyclic ring and are consistent with the course of N‐methylphenobarbital thionation reactions.  相似文献   

9.
The first primary 2‐aminocarba‐closo‐dodecaborates [1‐R‐2‐H2N‐closo‐CB11H10]? (R=H ( 1 ), Ph ( 2 )) have been synthesized by insertion reactions of (Me3Si)2NBCl2 into the trianions [7‐R‐7‐nido‐CB10H10]3?. The difunctionalized species [1,2‐(H2N)2closo‐CB11H10] ( 3 ) and 1‐CyHN‐2‐H3N‐closo‐CB11H10 (H‐ 4 ) have been prepared analogously from (Me3Si)2NBCl2 and 7‐H3N‐7‐nido‐CB10H12. In addition, the preparation of [Et4N][1‐H2N‐2‐Ph‐closo‐CB11H10] ([Et4N]‐ 5 ) starting from PhBCl2 and 7‐H3N‐7‐nido‐CB10H12 is described. Methylation of the [1‐Ph‐2‐H2N‐closo‐CB11H10]? ion ( 2 ) to produce 1‐Ph‐2‐Me3N‐closo‐CB11H10 ( 6 ) is reported. The crystal structures of [Et4N]‐ 2 , [Et4N]‐ 5 , and 6 were determined and the geometric parameters were compared to theoretical values derived from DFT and ab initio calculations. All new compounds were studied by NMR, IR, and Raman spectroscopy, MALDI mass spectrometry, and elemental analysis. The discussion of the experimental NMR chemical shifts and of selected vibrational band positions is supported by theoretical data. The thermal properties were investigated by differential scanning calorimetry (DSC). The pKa values of 2‐H3N‐closo‐CB11H11 (H‐ 1 ), 1‐H3N‐closo‐CB11H10 (H‐ 7 ), and 1,2‐(H3N)2closo‐CB11H10 (H2‐ 3 ) were determined by potentiometric titration and by NMR studies. The experimental results are compared to theoretical data (DFT and ab initio). The basicities of the aminocarba‐closo‐dodecaborates agree well with the spectroscopic and structural properties.  相似文献   

10.
Biginelli compounds 1 were first brominated at Me? C(6) with 2,4,4,6‐tetrabromocyclohex‐2,5‐dien‐1‐one to give Br2CH? C(6) derivatives 2 . The hydrolysis of the 6‐(dibromomethyl) group of 2c to give the 6‐formyl derivative 3c in the presence of an expensive Ag salt followed by reaction with N2H4?H2O yielded tetrahydropyrimido[4,5‐d]pyridazine‐2,5(1H,3H)‐dione ( 4c ; Scheme 1). However, treatment of the 6‐(dibromomethyl) derivatives 2 directly with N2H4?H2O led to the fused heterocycles 4 in better overall yield (Schemes 1 and 2; Table).  相似文献   

11.
It is well known that pyrimidin‐4‐one derivatives are able to adopt either the 1H‐ or the 3H‐tautomeric form in (co)crystals, depending on the coformer. As part of ongoing research to investigate the preferred hydrogen‐bonding patterns of active pharmaceutical ingredients and their model systems, 2‐amino‐6‐chloropyrimidin‐4‐one and 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4‐one have been cocrystallized with several coformers and with each other. Since Cl and Br atoms both have versatile possibilities to interact with the coformers, such as via hydrogen or halogen bonds, their behaviour within the crystal packing was also of interest. The experiments yielded five crystal structures, namely 2‐aminopyridin‐1‐ium 2‐amino‐6‐chloro‐4‐oxo‐4H‐pyrimidin‐3‐ide–2‐amino‐6‐chloropyrimidin‐4(3H)‐one (1/3), C5H7N2+·C4H3ClN3O·3C4H4ClN3O, (Ia), 2‐aminopyridin‐1‐ium 2‐amino‐6‐chloro‐4‐oxo‐4H‐pyrimidin‐3‐ide–2‐amino‐6‐chloropyrimidin‐4(3H)‐one–2‐aminopyridine (2/10/1), 2C5H7N2+·2C4H3ClN3O·10C4H4ClN3O·C5H6N2, (Ib), the solvent‐free cocrystal 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one (1/1), C5H6BrN3O·C5H6BrN3O, (II), the solvate 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H6BrN3O·C5H6BrN3O·C5H9NO, (III), and the partial cocrystal 2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐5‐bromo‐6‐methylpyrimidin‐4(1H)‐one–2‐amino‐6‐chloropyrimidin‐4(3H)‐one (0.635/1/0.365), C5H6BrN3O·C5H6BrN3O·C4H4ClN3O, (IV). All five structures show R22(8) hydrogen‐bond‐based patterns, either by synthon 2 or by synthon 3, which are related to the Watson–Crick base pairs.  相似文献   

12.
The benzoannelated diazapolyether macrocycles 6,7,9,10,17,18‐hexahydro‐5H,11H‐8,16,19‐trioxa‐5,11‐diazadibenzo[a,g]cyclopentadecene, C18H22N2O3, (I), 6,7,9,10,12,13,20,21‐octahydro‐5H,14H‐8,11,19,22‐tetraoxa‐5,14‐diazadibenzo[a,g]cyclooctadecene, C20H26N2O4, (II), and 6,7,9,10,17,18,20,21‐octahydro‐16H,22H‐5,8,11,19‐tetraoxa‐16,22‐diazadibenzo[a,j]cyclooctadecene 0.3‐hydrate, C20H26N2O4·0.304H2O, (III), show different patterns of hydrogen bonding. In (I), the amine H atoms participate only in intramolecular hydrogen bonds with ether O atoms. In (II), the amine H atoms form intramolecular hydrogen bonds with the phenoxy ether O atoms and intermolecular hydrogen bonds with alkyl ether O atoms in an adjacent molecule, forming a chain linking the macrocycles together via an R22(10) motif. Molecules of (II) were found on a crystallographic twofold axis. In (III), the amine H atoms participate in a hydrogen‐bond network with adjacent ether O atoms and with a water molecule [having a partial occupancy of 0.304 (6)] that links the molecules together via a C22(7) motif.  相似文献   

13.
1‐[6‐(1H‐Pyrrolo[2,3‐b]pyridin‐1‐yl)pyridin‐2‐yl]‐1H‐pyrrolo[2,3‐b]pyridin‐7‐ium tetrachloridoferrate(III), (C19H14N5)[FeCl4], (II), and [2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl‐κN7)pyridine‐κN]bis(nitrato‐κO)copper(II), [Cu(NO3)2(C19H13N5)], (III), were prepared by self‐assembly from FeCl3·6H2O or Cu(NO3)2·3H2O and 2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl)pyridine [commonly called 2,6‐bis(azaindole)pyridine, bap], C19H13N5, (I). Compound (I) crystallizes with Z′ = 2 in the P space group, with both independent molecules adopting a transtrans conformation. Compound (II) is a salt complex with weak C—H...Cl interactions giving rise to a zigzag network with π‐stacking down the a axis. Complex (III) lies across a twofold rotation axis in the C2/c space group. The CuII center in (III) has an N3O2 trigonal–bipyramidal environment. The nitrate ligand coordinates in a monodentate fashion, while the bap ligand adopts a twisted tridentate binding mode. C—H...O interactions give rise to a ribbon motif.  相似文献   

14.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

15.
The title compounds, 4‐benzyl­amino‐3‐(4‐methyl­benzyl)‐1H‐1,2,4‐triazol‐5(4H)‐one, C17H18N4O, (I), 3‐(4‐methyl­benzyl)‐4‐(4‐methyl­benzyl­amino)‐1H‐1,2,4‐tri­azol‐5(4H)‐one, C18H20N4O, (II), and 3‐(4‐chloro­benzyl)‐4‐(4‐methyl­benzyl­amino)‐1H‐1,2,4‐triazol‐5(4H)‐one, C17H17ClN4O, (III), were obtained from the corresponding Schiff base in the presence of diglyme and NaBH4. Each compound contains a 1,2,4‐triazole ring and two benzene rings, which are essentially planar. The molecules are linked by a combination of intermolecular N—H⋯O and N—H⋯N hydrogen bonds. Additionally, there is a weak π–π stacking interaction in (I), involving the benzene ring of the amino­benzyl group and the partially aromatic 1,2,4‐triazole moiety, with a centroid–centroid distance of 3.7397 (10) Å.  相似文献   

16.
A series of cocrystals of isoniazid and four of its derivatives have been produced with the cocrystal former 4‐tert‐butylbenzoic acid via a one‐pot covalent and supramolecular synthesis, namely 4‐tert‐butylbenzoic acid–isoniazid, C6H7N3O·C11H14O2, 4‐tert‐butylbenzoic acid–N′‐(propan‐2‐ylidene)isonicotinohydrazide, C9H11N3O·C11H14O2, 4‐tert‐butylbenzoic acid–N′‐(butan‐2‐ylidene)isonicotinohydrazide, C10H13N3O·C11H14O2, 4‐tert‐butylbenzoic acid–N′‐(diphenylmethylidene)isonicotinohydrazide, C19H15N3O·C11H14O2, and 4‐tert‐butylbenzoic acid–N′‐(4‐hydroxy‐4‐methylpentan‐2‐ylidene)isonicotinohydrazide, C12H17N3O2·C11H14O2. The co‐former falls under the classification of a `generally regarded as safe' compound. The four derivatizing ketones used are propan‐2‐one, butan‐2‐one, benzophenone and 3‐hydroxy‐3‐methylbutan‐2‐one. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and all of its derivatives. The remaining hydrogen‐bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems.  相似文献   

17.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

18.
The intermolecular interactions in the structures of a series of Schiff base ligands have been thoroughly studied. These ligands can be obtained in different forms, namely, as the free base 2‐[(2E)‐2‐(1H‐imidazol‐4‐ylmethylidene)‐1‐methylhydrazinyl]pyridine, C10H11N5, 1 , the hydrates 2‐[(2E)‐2‐(1H‐imidazol‐2‐ylmethylidene)‐1‐methylhydrazinyl]‐1H‐benzimidazole monohydrate, C12H12N6·H2O, 2 , and 2‐{(2E)‐1‐methyl‐2‐[(1‐methyl‐1H‐imidazol‐2‐yl)methylidene]hydrazinyl}‐1H‐benzimidazole 1.25‐hydrate, C13H14N6·1.25H2O, 3 , the monocationic hydrate 5‐{(1E)‐[2‐(1H‐1,3‐benzodiazol‐2‐yl)‐2‐methylhydrazinylidene]methyl}‐1H‐imidazol‐3‐ium trifluoromethanesulfonate monohydrate, C12H13N6+·CF3O3S?·H2O, 5 , and the dicationic 2‐{(2E)‐1‐methyl‐2‐[(1H‐imidazol‐3‐ium‐2‐yl)methylidene]hydrazinyl}pyridinium bis(trifluoromethanesulfonate), C10H13N52+·2CF3O3S?, 6 . The connection between the forms and the preferred intermolecular interactions is described and further studied by means of the calculation of the interaction energies between the neutral and charged components of the crystal structures. These studies show that, in general, the most important contribution to the stabilization energy of the crystal is provided by π–π interactions, especially between charged ligands, while the details of the crystal architecture are influenced by directional interactions, especially relatively strong hydrogen bonds. In one of the structures, a very interesting example of the nontypical F…O interaction was found and its length, 2.859 (2) Å, is one of the shortest ever reported.  相似文献   

19.
A new series of platinum(II) complexes with tridentate ligands 2,6‐bis(1‐alkyl‐1,2,3‐triazol‐4‐yl)pyridine and 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (N7R), [Pt(N7R)Cl]X ( 1 – 7 ) and [Pt(N7R)(C?CR′)]X ( 8 – 17 ; R=n‐C4H9, n‐C8H17, n‐C12H25, n‐C14H29, n‐C18H37, C6H5, and CH2‐C6H5; R′=C6H5, C6H4‐CH3p, C6H4‐CF3p, C6H4‐N(CH3)2p, and cholesteryl 2‐propyn‐1‐yl carbonate; X=OTf?, PF6?, and Cl?), has been synthesized and characterized. Their electrochemical and photophysical properties have also been studied. Two amphiphilic platinum(II)? 2,6‐bis(1‐dodecyl‐1,2,3‐triazol‐4‐yl)pyridine complexes ( 3‐Cl and 8 ) were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air/water interface. These LB films were characterized by the study of their surface‐pressure–molecular‐area (π–A) isotherms, XRD, and IR and polarized‐IR spectroscopy.  相似文献   

20.
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号