首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two‐center overlap integrals over Slater type orbitals (STOs) have been expressed in terms of the well‐known Mulliken's integrals Bn(pt) using Rodrigues's formula for normalized associated Legendre functions. A computer program is written in Mathematica 4.0 for the evaluation of two‐center overlap integrals over STOs. Using this computer program, symbolic tables are presented for two‐center overlap integrals up to quantum numbers 1 ≤ n,n′ ≤ 3, 0 ≤ l,l′ ≤ 2, ?2 ≤ m,m′ ≤ 2. Numerical results of this work, for some quantum sets, have also been compared with prior literature and best agreement achieved with recent works of Barnett while some discrepancies were obtained with works of Öztekin et al. and Guseinov et al.  相似文献   

2.
3.
4.
An algorithm for evaluation of two‐center, three‐electron integrals with the correlation factors of the type rr and rrr as well as four‐electron integrals with the correlation factors rrr and rrr in the Slater basis is presented. This problem has been solved here in elliptical coordinates, using the generalized and modified form of the Neumann expansion of the interelectronic distance function r for k ≥ ?1. Some numerical results are also included. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

5.
A general formula has been established for the expansion of the product of two normalized associated Legendre functions centered on the nuclei a and b. This formula has been utilized for the evaluation of two‐center overlap and nuclear attraction integrals over Slater‐type orbitals (STOs) with integer and noninteger principal quantum numbers. The formulas given in this study for the evaluation of two‐center overlap and nuclear attraction integrals show good rate of convergence and great numerical stability under wide range of quantum numbers, orbital exponents, and internuclear distances. © 2001 Wiley Periodicals, Inc. Int J Quantum Chem, 2001  相似文献   

6.
Multicenter electric multipole moment integrals over Slater type orbitals with integer and noninteger principal quantum numbers are expressed in terms of overlap integrals. The computer results for the integer case agree best with the prior literature. The accuracy of the computer results for noninteger case is not compared with the literature due to the lack of relevant literature, but the limit of the noninteger case is compared with the integer case and good agreement is achieved for wide changes in the relevant molecular parameters.  相似文献   

7.
8.
The expansion formula has been presented for Slater‐type orbitals with noninteger principal quantum numbers (noninteger n‐STOs), which involves conventional STOs (integer n‐STOs) with the same center. By the use of this expansion formula, arbitrary multielectron multicenter molecular integrals over noninteger n‐STOs are expressed in terms of counterpart integrals over integer n‐STOs with a combined infinite series formula. The convergence of the method is tested for two‐center overlap, nuclear attraction, and two‐electron one‐center integrals, due to the scarcity of the literature, and fair uniform convergence and great numerical stability under wide changes in molecular parameters is achieved. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

9.
This article presents a variation of the integral transform method to evaluate multicenter bielectronic integrals (12|34), with 1s Slater‐type orbitals. It is proved that it is possible to define, out of the expression of (12|34) given by the integral transform method, a function F(q) that has the property of having a unique Q, such that F(Q) = (12|34). Therefore, F(q) may be used to calculate (12|34). It is shown that the evaluation of F(Q) turns out to be simpler than the three‐dimensional integral involved in the calculation of (12|34), and an algorithm is presented to calculate Q. The results show that relative errors on the order of 10?3 or lower are obtained very efficiently. In addition, it is shown that the proposed algorithm is very stable. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

10.
The multicenter charge‐density expansion coefficients [I. I. Guseinov, J Mol Struct (Theochem) 417 , 117 (1997)] appearing in the molecular integrals with an arbitrary multielectron operator were calculated for extremely large quantum numbers of Slater‐type orbitals (STOs). As an example, using computer programs written for these coefficients, with the help of single‐center expansion method, some of two‐electron two‐center Coulomb and four‐center exchange electron repulsion integrals of Hartree–Fock–Roothaan (HFR) equations for molecules were also calculated. Accuracy of the results is quite high for the quantum numbers, screening constants, and location of STOs. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 146–152, 2000  相似文献   

11.
One‐electron integrals over three centers and two‐electron integrals over two centers, involving Slater‐type orbitals (STOs), can be evaluated using either an infinite expansion for 1/r12 within an ellipsoidal‐coordinate system or by employing a one‐center expansion in spherical‐harmonic and zeta‐function products. It is shown that the convergence characteristics of both methods are complimentary and that they must both be used if STOs are to be used as basis functions in ab initio calculations. To date, reports dealing with STO integration strategies have dealt exclusively with one method or the other. While the ellipsoidal method is faster, it does not always converge to a satisfactory degree of precision. The zeta‐function method, however, offers reliability at the expense of speed. Both procedures are described and the results of some sample calculation presented. Possible applications for the procedures are also discussed. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 1–13, 1999  相似文献   

12.
Many types of molecular integrals involving Slater functions can be expressed, with the ζ‐function method in terms of sets of one‐dimensional auxiliary integrals whose integrands contain two‐range functions. After reviewing the properties of these functions (including recurrence relations, derivatives, integral representations, and series expansions), we carry out a detailed study of the auxiliary integrals aimed to facilitate both the formal and computational applications of the ζ‐function method. The usefulness of this study in formal applications is illustrated with an example. The high performance in numerical applications is proved by the development of a very efficient program for the calculation of two‐center integrals with Slater functions corresponding to electrostatic potential, electric field, and electric field gradient. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

13.
By the use of exponential‐type functions (ETFs) the simpler formulas for the expansion of Slater‐type orbitals (STOs) in terms of STOs at a displaced center are derived. The expansion coefficients for translation of STOs are presented by a linear combination of overlap integrals. The final results are of a simple structure and are, therefore, especially useful for machine computations of arbitrary multielectron multicenter molecular integrals over STOs that arise in the Hartree–Fock–Roothaan approximation and also in the Hylleraas correlated wave function method for the determination of arbitrary multielectron properties of atoms and molecules. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 126–129, 2001  相似文献   

14.
The auxiliary functions $Q_{nn'}^{q}(p,pt)$ and $G_{-nn'}^{q}(p_{a},p,pt)$ which are used in our previous paper [Guseinov, I. I.; Mamedov, B. A. Int J Quantum Chem 2001, 81, 117] for the computation of multicenter electron‐repulsion integrals over Slater‐type orbitals (STOs) are discussed in detail, and the method is given for their numerical computation. The present method is suitable for all values of the parameters pa, p, and pt. Three‐ and four‐center electron‐repulsion integrals are calculated for extremely large quantum numbers using relations for auxiliary functions obtained in this paper. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

15.
The Gauss transform of Slater‐type orbitals is used to express several types of molecular integrals involving these functions in terms of simple auxiliary functions. After reviewing this transform and the way it can be combined with the shift operator technique, a master formula for overlap integrals is derived and used to obtain multipolar moments associated to fragments of two‐center distributions and overlaps of derivatives of Slater functions. Moreover, it is proved that integrals involving two‐center distributions and irregular harmonics placed at arbitrary points (which determine the electrostatic potential, field and field gradient, as well as higher order derivatives of the potential) can be expressed in terms of auxiliary functions of the same type as those appearing in the overlap. The recurrence relations and series expansions of these functions are thoroughly studied, and algorithms for their calculation are presented. The usefulness and efficiency of this procedure are tested by developing two independent codes: one for the derivatives of the overlap integrals with respect to the centers of the functions, and another for derivatives of the potential (electrostatic field, field gradient, and so forth) at arbitrary points. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
Slater‐type orbitals are applied to represent the numerically obtained Kohn–Sham eigenfunction of free atom. The algorithm evaluating the nonlinear expansion coefficients of this approximation is described. Standard iterative solution of Kohn–Sham equation to obtain the nonlinear expansion coefficients is avoided and replaced by the projection method. First, the eigenfunction is obtained in the B‐spline space based on the Galerkin formulation of the finite element method. Then, based on the density functional theory, the conditions are formulated, which leads to the set of nonlinear equations. The proposed algorithm is general and can be applied for any atomic Kohn–Sham eigenfunction. As an examplary application of the proposed algorithm, the set of nonlinear equations is derived for occupied states of N, Al, Ga, and In atoms. The expansion coefficients, obtained for these atoms, are evaluated numerically by Newton procedure and listed in the tables. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

17.
We apply Löwdin's canonical orthogonalization method to investigate the linearly dependent problem arising from the variational calculation of atomic systems using Slater‐type orbital configuration‐interaction (STO‐CI) basis functions. With a specific arithmetic precision used in numerical computations, the nonorthogonal STO‐CI basis is easily linearly dependent when the number of basis functions is sufficiently large. We show that Löwdin's canonical orthogonalization method can successfully overcome such problem and simultaneously reduce the dimension of basis set. This is illustrated first through an S‐wave model He atom, and then the real two‐electron atoms in both the ground and excited states. In all of these calculations, the variational bound state energies of the two‐electron systems are obtained in reasonably high accuracy using over‐redundant STO‐CI bases, however, without using extended high‐precision technique. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
19.
A recent paper by Xiao‐Yin Pan and Viraht Sahni [Int. J. Quant. Chem. 110, 2833 (2010)] claims that current density functional theory should be based on the physical current density rather than the paramagnetic current density, as in the standard Vignale‐Rasolt formulation. In this comment we show that the claims in the paper by Pan and Sahni are erroneous. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
In this Comment on the above‐mentioned paper by F. E. Harris, A. M. Frolov, and V. H. Smith, we briefly review our contributions to development of new methods for solution of the Coulomb four‐body problem. We show that our research group, headed by Professor T. K. Rebane, had a priority in using the fully correlated exponential basis for variational calculations of four‐body systems. We also draw attention to the fact that our group subsequently implemented a more advanced method, which uses highly efficient exponential‐trigonometric basis functions for solution of the same problem. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号