首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The rational Arnoldi process is a popular method for the computation of a few eigenvalues of a large non‐Hermitian matrix and for the approximation of matrix functions. The method is particularly attractive when the rational functions that determine the process have only few distinct poles , because then few factorizations of matrices of the form A ? zjI have to be computed. We discuss recursion relations for orthogonal bases of rational Krylov subspaces determined by rational functions with few distinct poles. These recursion formulas yield a new implementation of the rational Arnoldi process. Applications of the rational Arnoldi process to the approximation of matrix functions as well as to the computation of eigenvalues and pseudospectra of A are described. The new implementation is compared to several available implementations.  相似文献   

2.
It is shown that the method of Arnoldi can be successfully used for solvinglarge unsymmetric eigenproblems. Like the symmetric Lanczos method, Arnoldi's algorithm realizes a projection process onto the Krylov subspace Km spanned by v1,Av1,...,Am?1v1, where v1 is the initial vector. We therefore study the convergence of the approximate eigenelements obtained by such a process. In particular, when the eigenvalues of A are real, we obtain bounds for the rates of convergence similar to those for the symmetric Lanczos algorithm. Some practical methods are presented in addition to that of Arnoldi, and several numerical experiments are described.  相似文献   

3.
Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error bounds for Ritz elements are established. Compared with generalized Lanczos methods, which contain Arnoldi's method, the convergence analysis shows that the block versions have two advantages: First, they may be efficient for computing clustered eigenvalues; second, they are able to solve multiple eigenproblems. However, a deep analysis exposes that the approximate eigenvectors or Ritz vectors obtained by general orthogonal projection methods including generalized block methods may fail to converge theoretically for a general unsymmetric matrix A even if corresponding approximate eigenvalues or Ritz values do, since the convergence of Ritz vectors needs more sufficient conditions, which may be impossible to satisfy theoretically, than that of Ritz values does. The issues of how to restart and to solve multiple eigenproblems are addressed, and some numerical examples are reported to confirm the theoretical analysis. Received July 7, 1994 / Revised version received March 1, 1997  相似文献   

4.
This paper concerns with the properties of Hadamard product of inverse M‐matrices. Structures of tridiagonal inverse M‐matrices and Hessenberg inverse M‐matrices are analysed. It is proved that the product AAT satisfies Willoughby's necessary conditions for being an inverse M‐matrix when A is an irreducible inverse M‐matrix. It is also proved that when A is either a Hessenberg inverse M‐matrix or a tridiagonal inverse M‐matrix then AAT is an inverse M‐matrix. Based on these results, the conjecture that AAT is an inverse M‐matrix when A is an inverse M‐matrix is made. Unfortunately, the conjecture is not true. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

5.
In this paper, we introduce a generalized Krylov subspace based on a square matrix sequence {A j } and a vector sequence {u j }. Next we present a generalized Arnoldi procedure for generating an orthonormal basis of . By applying the projection and the refined technique, we derive a restarted generalized Arnoldi method and a restarted refined generalized Arnoldi method for solving a large-scale polynomial eigenvalue problem (PEP). These two methods are applied to solve the PEP directly. Hence they preserve essential structures and properties of the PEP. Furthermore, restarting reduces the storage requirements. Some theoretical results are presented. Numerical tests report the effectiveness of these methods. Yimin Wei is supported by the National Natural Science Foundation of China and Shanghai Education Committee.  相似文献   

6.
Let (P : R p ) be a simple shift family of distributions onR p , and letK R p be a convex cone. Within the class of nonrandomized tests ofK versusR p K, whose acceptance regionA satisfiesA=A+K, a test with minimal bias is constructed. This minimax test is compared to a likelihood ratio type test, which is optimal with respect to a different criterion. The minimax test is mimicked in the context of linear regression and one-sided tests for covariance matrices.  相似文献   

7.
We revisit the shift‐and‐invert Arnoldi method proposed in [S. Lee, H. Pang, and H. Sun. Shift‐invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32: 774–792, 2010] for numerical approximation to the product of Toeplitz matrix exponential with a vector. In this approach, one has to solve two large‐scale Toeplitz linear systems in advance. However, if the desired accuracy is high, the cost will be prohibitive. Therefore, it is interesting to investigate how to solve the Toeplitz systems inexactly in this method. The contribution of this paper is in three regards. First, we give a new stability analysis on the Gohberg–Semencul formula (GSF) and define the GSF condition number of a Toeplitz matrix. It is shown that when the size of the Toeplitz matrix is large, our result is sharper than the one given in [M. Gutknecht and M. Hochbruck. The stability of inversion formulas for Toeplitz matrices, Linear Algebra Appl., 223/224: 307–324, 1995]. Second, we establish a relation between the error of Toeplitz systems and the residual of Toeplitz matrix exponential. We show that if the GSF condition number of the Toeplitz matrix is medium‐sized, then the Toeplitz systems can be solved in a low accuracy. Third, based on this relationship, we present a practical stopping criterion for relaxing the accuracy of the Toeplitz systems and propose an inexact shift‐and‐invert Arnoldi algorithm for the Toeplitz matrix exponential problem. Numerical experiments illustrate the numerical behavior of the new algorithm and show the effectiveness of our theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The global Arnoldi method can be used to compute exterior eigenpairs of a large non-Hermitian matrix A, but it does not work well for interior eigenvalue problems. Based on the global Arnoldi process that generates an F-orthonormal basis of a matrix Krylov subspace, we propose a global harmonic Arnoldi method for computing certain harmonic F-Ritz pairs that are used to approximate some interior eigenpairs. We propose computing the F-Rayleigh quotients of the large non-Hermitian matrix with respect to harmonic F-Ritz vectors and taking them as new approximate eigenvalues. They are better and more reliable than the harmonic F-Ritz values. The global harmonic Arnoldi method inherits convergence properties of the harmonic Arnoldi method applied to a larger matrix whose distinct eigenvalues are the same as those of the original given matrix. Some properties of the harmonic F-Ritz vectors are presented. As an application, assuming that A is diagonalizable, we show that the global harmonic Arnoldi method is able to solve multiple eigenvalue problems both in theory and in practice. To be practical, we develop an implicitly restarted global harmonic Arnoldi algorithm with certain harmonic F-shifts suggested. In particular, this algorithm can be adaptively used to solve multiple eigenvalue problems. Numerical experiments show that the algorithm is efficient for the eigenproblem and is reliable for quite ill-conditioned multiple eigenproblems.  相似文献   

9.
LetD p be the set of all doubly stochastic square matrices of orderp i.e. the set of allp × p matrices with non-negative entries with row and column sums equal to unity. The permanent of ap × p matrixA = (a ij ) is defined byP(A) = Sp II i=1 p a i(i) whereS p is the symmetric group of orderp. Van der Waerden conjectured thatP(A) p !/p p for all A AD p with equality occurring if and only ifA = J p , whereJ p is the matrix all of whose entries are equal to 1/p.The validity of this conjecture has been shown for a few values ofp and for generalp under certain assumptions. In this paper the problem of finding the minimum of the permanent of a doubly stochastic matrix has been formulated as a reversed geometric program with a single constraint and an equivalent dual program is given. A related problem of reversed homogeneous posynomial programming problem is also studied.  相似文献   

10.
We consider the nonlinear eigenvalue problem M(λ)x = 0, where M(λ) is a large parameter‐dependent matrix. In several applications, M(λ) has a structure where the higher‐order terms of its Taylor expansion have a particular low‐rank structure. We propose a new Arnoldi‐based algorithm that can exploit this structure. More precisely, the proposed algorithm is equivalent to Arnoldi's method applied to an operator whose reciprocal eigenvalues are solutions to the nonlinear eigenvalue problem. The iterates in the algorithm are functions represented in a particular structured vector‐valued polynomial basis similar to the construction in the infinite Arnoldi method [Jarlebring, Michiels, and Meerbergen, Numer. Math., 122 (2012), pp. 169–195]. In this paper, the low‐rank structure is exploited by applying an additional operator and by using a more compact representation of the functions. This reduces the computational cost associated with orthogonalization, as well as the required memory resources. The structure exploitation also provides a natural way in carrying out implicit restarting and locking without the need to impose structure in every restart. The efficiency and properties of the algorithm are illustrated with two large‐scale problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Given a square matrix A, the inverse subspace problem is concerned with determining a closest matrix to A with a prescribed invariant subspace. When A is Hermitian, the closest matrix may be required to be Hermitian. We measure distance in the Frobenius norm and discuss applications to Krylov subspace methods for the solution of large‐scale linear systems of equations and eigenvalue problems as well as to the construction of blurring matrices. Extensions that allow the matrix A to be rectangular and applications to Lanczos bidiagonalization, as well as to the recently proposed subspace‐restricted SVD method for the solution of linear discrete ill‐posed problems, also are considered.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We study a map of osculating elements of an affine Cayley- Klein (CK-) plane into the Lie algebraA 4(2) of the aequiform transformationsA 4(2) of the given plane. If we use the real projective spaceP 3() overA 4(2) each osculating element defines a straight line inP 3(). In the first part of this paper this map is studied in detail. In the second part we study second order properties of one- parameter motions and their corresponding properties in the Lie algebraA 4(2). This is done by considering the analogen to the formula of EULERSAVARY in the image spaceP 3() overA 4(2).  相似文献   

13.
Ding  Shusen 《Potential Analysis》2003,18(1):25-34
We prove the basic A r ()-weighted imbedding inequalities for A-harmonic tensors. These results can be used to estimate the integrals for A-harmonic tensors and to study the integrability of A-harmonic tensors and the properties of the homotopy operator T: C (D, l )C (D, l–1).  相似文献   

14.
Through a Hermitian‐type (skew‐Hermitian‐type) singular value decomposition for pair of matrices (A, B) introduced by Zha (Linear Algebra Appl. 1996; 240 :199–205), where A is Hermitian (skew‐Hermitian), we show how to find a Hermitian (skew‐Hermitian) matrix X such that the matrix expressions A ? BX ± X*B* achieve their maximal and minimal possible ranks, respectively. For the consistent matrix equations BX ± X*B* = A, we give general solutions through the two kinds of generalized singular value decompositions. As applications to the general linear model {y, Xβ, σ2V}, we discuss the existence of a symmetric matrix G such that Gy is the weighted least‐squares estimator and the best linear unbiased estimator of Xβ, respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Summary We present here a new hybrid method for the iterative solution of large sparse nonsymmetric systems of linear equations, say of the formAx=b, whereA N, N , withA nonsingular, andb N are given. This hybrid method begins with a limited number of steps of the Arnoldi method to obtain some information on the location of the spectrum ofA, and then switches to a Richardson iterative method based on Faber polynomials. For a polygonal domain, the Faber polynomials can be constructed recursively from the parameters in the Schwarz-Christoffel mapping function. In four specific numerical examples of non-normal matrices, we show that this hybrid algorithm converges quite well and is approximately as fast or faster than the hybrid GMRES or restarted versions of the GMRES algorithm. It is, however, sensitive (as other hybrid methods also are) to the amount of information on the spectrum ofA acquired during the first (Arnoldi) phase of this procedure.  相似文献   

16.
We study the perturbation theory for the eigenvalue problem of a formal matrix product A 1 s 1 ··· A p s p, where all A k are square and s k {–1, 1}. We generalize the classical perturbation results for matrices and matrix pencils to perturbation results for generalized deflating subspaces and eigenvalues of such formal matrix products. As an application we then extend the structured perturbation theory for the eigenvalue problem of Hamiltonian matrices to Hamiltonian/skew-Hamiltonian pencils.  相似文献   

17.
An n × n real matrix A = (aij)n × n is called bi‐symmetric matrix if A is both symmetric and per‐symmetric, that is, aij = aji and aij = an+1?1,n+1?i (i, j = 1, 2,..., n). This paper is mainly concerned with finding the least‐squares bi‐symmetric solutions of matrix inverse problem AX = B with a submatrix constraint, where X and B are given matrices of suitable sizes. Moreover, in the corresponding solution set, the analytical expression of the optimal approximation solution to a given matrix A* is derived. A direct method for finding the optimal approximation solution is described in detail, and three numerical examples are provided to show the validity of our algorithm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A Hermitian matrix X is called a least‐squares solution of the inconsistent matrix equation AXA* = B, where B is Hermitian. A* denotes the conjugate transpose of A if it minimizes the F‐norm of B ? AXA*; it is called a least‐rank solution of AXA* = B if it minimizes the rank of B ? AXA*. In this paper, we study these two types of solutions by using generalized inverses of matrices and some matrix decompositions. In particular, we derive necessary and sufficient conditions for the two types of solutions to coincide. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, some optimal inclusion intervals of matrix singular values are discussed in the set ΩA of matrices equimodular with matrix A. These intervals can be obtained by extensions of the Gerschgorin‐type theorem for singular values, based only on the use of positive scale vectors and their intersections. Theoretic analysis and numerical examples show that upper bounds of these intervals are optimal in some cases and lower bounds may be non‐trivial (i.e. positive) when PA is a H‐matrix, where P is a permutation matrix, which improves the conjecture in Reference (Linear Algebra Appl 1984; 56 :105‐119). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
We develop the notion of t-homogeneous, G-semiregular large sets of t-designs, show that there are infinitely many 3-homogeneous PSL(2, q)-semiregular large sets when q 3 mod 4, two sporadic 3-homogeneous AL(1,32)-semiregular large sets, and no other interesting t-homogeneous G-semiregular large sets for t 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号