首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel route for producing polymer blends by reactive extrusion is described, starting from poly (vinyl chloride)/methyl methacrylate (PVC/MMA) dry blend and successive polymerization of MMA in an extruder. Small angle X‐ray scattering (SAXS) measurements were applied to study the monomer's mode of penetration into the PVC particles and to characterize the supermolecular structure of the reactive poly(vinyl chloride)/poly(methyl methacrylate) (PVC/PMMA) blends obtained, as compared to the corresponding physical blends of similar composition. These measurements indicate that the monomer molecules can easily penetrate into the PVC sub‐primary particles, separating the PVC chains. Moreover, the increased mobility of the PVC chains enables formation of an ordered lamellar structure, with an average d‐spacing of 4.1 nm. The same characteristic lamellar structure is further detected upon compression molding or extrusion of PVC and PVC/PMMA blends. In this case the mobility of the PVC chains is enabled through thermal energy. Dynamic mechanical thermal analysis (DMTA) and SAXS measurements of reactive and physical PVC/PMMA blends indicate that miscibility occurs between the PVC and PMMA chains. The studied reactive PVC/PMMA blends are found to be miscible, while the physical PVC/PMMA blends are only partially miscible. It can be suggested that the miscible PMMA chains weaken dipole–dipole interactions between the PVC chains, leading to high mobility and resulting in an increased PVC crystallinity degree and decreased PVC glass transition temperature (Tg). These phenomena are shown in the physical PVC/PMMA blends and further emphasized in the reactive PVC/PMMA blends. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In this article we determine the miscibility of azobenzene derivative (poly(4‐(N‐(2‐methacryloyloxyethyl)‐N‐ethylamino)‐4′‐nitroazobenzene)90‐co‐(methyl methacrylate)10)/poly(vinyl acetate) (PVAc) and azobenzene derivative/poly(vinyl chloride) (PVC) blends using Fourier Transform infrared (FT‐IR) spectroscopy. With this method we can clearly identify the exact interactions responsible for miscibility. In the azobenzene derivative 50:50PVAc blend new peaks were evident at 2960, 2890, 1237 and 959 cm?1, these peaks depict miscible interactions. These wavenumbers indicate that the miscible interactions occurring are from the C? H stretching band, the vinyl acetate C?O, conjugated to the ester carbonyl, the cis‐transformation N?N stretch frequency and the acetate ester weak doublet. The azobenzene derivative 80:20PVC blend display peaks identical in profile to the blend homopolymers, indicating no miscible interactions. However, this could be due to overlapping of peaks within the same wavenumber region, making resolution difficult. This research demonstrates FT‐IR can deduce favorable interactions for miscibility and therefore numerous miscible blends can successfully be calculated if possessing the same groups responsible for miscibility. This paves the way for a new generation of designer optical materials with the desired properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The transport properties of a set of four copolymers based on poly(vinyl chloride) (PVC) have been studied. The nucleophilic substitution of chlorine atoms with 4‐mercaptophenol sodium salt, 2‐thionaphthalene, 4‐(1‐adamantyl) thiophenol, and thiophenolate sodium salt as the nucleophiles has been performed, from low conversion levels (3%) to high levels (40%), and the permeability, solubility, and diffusivity of oxygen, nitrogen, carbon dioxide, and methane have been measured. The introduction of bulky groups to the PVC chain leads to chain separation and results in large increases in the free volume at conversions up to 10%. This brings about a 5‐fold increase in the diffusion coefficients that is almost independent of the bulkiness of the substituent. Solubility is little affected and instead tends to decrease as substitution progresses. The substitution of more than 10% of the chlorine atoms does not result in an improvement in the transport properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 964–971, 2002  相似文献   

4.
The miscibility of poly(hydroxyether terephthalate ester) (PHETE) with poly(4‐vinyl pyridine) (P4VP) was established on the basis of thermal analysis. Differential scanning calorimetry showed that each blend displayed a single glass‐transition temperature (Tg), which is intermediate between those of the pure polymers and varies with the composition of blend. The Tg‐composition relationship can be well described with Kwei equation with k = 1 and q = ?30.8 (K), suggesting the presence of the intermolecular specific interactions in the blend system. To investigate the intermolecular specific interactions in the blends, the model compounds such as 1,3‐diphenoxy‐2‐propanol, 4‐methyl pyridine, and ethyl benzoate were used to determine the equilibrium constants, according to Coleman and Painter model, to account for the association equilibriums of several structural moieties, using liquid Fourier transform infrared difference spectroscopy. In terms of the difference in the association equilibrium constant, it is proposed that there are the competitive specific interactions in the blends, which were confirmed by means of Fourier transform infrared spectroscopy of the blends. It is observed that upon adding P4VP to the system, the ester carbonyls of PHETE that were H‐bonded with the hydroxyl groups were released because of the formation of the stronger interchain association via the hydrogen bonding between the hydroxyls of PHETE and tertiary nitrogen atoms of P4VP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1618–1626, 2006  相似文献   

5.
The development of lamellar morphology in poly(oxymethylene) (POM) and its miscible blends was studied by synchrotron time-resolved small-angle X-ray scattering (SAXS), during primary and secondary crystallization at temperatures near 150°C. The blends contained two different diluents: poly(vinyl 4-hydroxy styrene) [common name poly(vinyl phenol), (PVP)], which had a high glass temperature (Tg = 150°C), and styrene-co-hydroxy styrene oligomer (PhSO), which had a low glass temperature (Tg = −37°C). The SAXS data were analyzed by correlation function analysis to extract several lamellar parameters: long period (L), lamellar crystalline thickness (lc), amorphous layer thickness (la), and invariant (Q). The variation in Q defined the region where spherulites quickly grew and filled the entire space, and was referred to as the primary crystallization dominant regime. A rapid drop in L and lc was observed at early times, and this can be explained by defective lamellar stacks filling in space between primary stacks, as secondary crystals form during the nominal primary crystallization dominant regime. Lamellar thickening with time in the long-time secondary crystallization region was observed in neat POM and the blend with 10 % low Tg diluent, while this process was inhibited with the high Tg diluent due to the higher Tg of the interlamellar species. A decrease in la at long times confirmed the lamellar thickening. We refer to the lamellar thickening process as a type of secondary crystallization. Interlamellar inclusion or trapping was detected to different degrees with the high Tg diluent, while exclusion was found for the low Tg diluent. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3115–3122, 1999  相似文献   

6.
Time-resolved synchrotron wide- and small-angle X-ray scattering experiments were used to investigate crystallization behavior and microstructure development of a nearly monodisperse poly(ethylene oxide) [PEO] (Mw = 53,500), and its melt-miscible blends with two fractionated styrene - hydroxystyrene random copolymers [SHS]. PEO crystallization rates decrease significantly in the presence of the melt-miscible SHS copolymers. All low and high molecular weight SHS blends exhibit a crystallization process at relatively short times characterized by large Avrami exponents (n), followed by a dominant process with n near that of neat PEO. A model for the crystallization of these blends is proposed.  相似文献   

7.
A micellar electrokinetic chromatography method is presented for the determination of the partition coefficient for the distribution of nonpolar and moderately polar solutes between the micelle and the aqueous phases in aqueous micellar solutions. In comparison with the literature the method is, theoretically and experimentally, the most straightforward for this application. An equation is derived for the determination of the partition coefficient in a coated fused silica capillary, with neglible electroosmotic flow, from simple measurements of the migration times of solutes and a marker for micelle migration. The advantages and limitations of this method are discussed. The method is tested by using sodium dodecylsulfate (SDS) surfactant and naphthalene, benzene, toluene, and phenol solutes. Micellar electrokinetic chromatography in coated columns isideally suited for the separation of hydrophobic solutes in aqueous samples.  相似文献   

8.
The influence of low contents of a liquid crystalline polymer on the crystallization and melting behavior of isotactic polypropylene (iPP) was investigated using electron and optical microscopy, differential scanning calorimetry, and X-ray diffraction. In pure iPP, the α modification was found, whereas for iPP/Vectra blends at Vectra concentration <5%, both α and β forms were observed. The amount of β phase varied from 0.23 to 0.16. Optical microscopy showed that Vectra was able to nucleate both α and β forms. Non-isothermal crystallization produces a material with a strong tendency for recrystallization of the α and β forms (αα′ and ββ′ recrystallization) leading to double endotherms for both crystalline forms in DSC thermograms. Melting thermograms after isothermal crystallization at low temperatures showed a similar behavior. At values of Tc > 119 °C for the α form and Tc > 125 °C for the β form, only one melting endotherm was observed because enough perfect crystals, not susceptible to recrystallization, were obtained. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1949–1959, 2004  相似文献   

9.
Mixtures of polystyrene derivatives (PSCS) and poly(vinyl methyl ether) (PVME) were made photocrosslinkable by chemically labeling PSCS chains with photoreactive anthracene. Miscibility of these anthracene-labeled PSCS/PVME blends was examined by light scattering under several crosslinking conditions in the one-phase region via photodimerization of anthracenes. As the reaction proceeds, the coexistence curve of PSCS/PVME blends shifts toward the low temperature side. By following the changes in concentration of anthracenes with irradiation time, it was found that the crosslinking reaction of PSCS chains in the blends does not follow the mean-field kinetics. However, it can be well expressed by the Kohlrausch–Williams–Watts (KWW) relaxation mechanism, indicating that the crosslinking reaction proceeds inhomogeneously in the blends. By scaling the reaction time with the average reaction rate obtained from the KWW equation modified for the reaction kinetics, all the crosslinking data obtained in the miscible region of the reacted blends fall on a single master curve. These experimental results suggest the universal behavior of the photocrosslinking kinetics obtained under the “shallow quench” conditions in the region far away from the coexistence curve of the reacting blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 455–462, 1998  相似文献   

10.
The phase separation of a crystalline and miscible polymer blend, poly(ε-caprolactone) /poly(styrene-co-acrylonitrile) (PCL/SAN), has been studied by differential scanning calorimetry (DSC), using a SAN containing 28.3% of acrylonitrile units. Several phenomena can be associated with the occurrence of phase separation depending upon the composition of the mixture. Following annealing at high temperatures, below and above the phase separation temperature Tc, three cases can be distinguished. In Case I, there is no sign of crystallization during quenching and DSC scanning, but a melting peak is observed at Tc, and above. In Case II, there is no crystallization on quenching but it does occur during the DSC run; the shift of the crystallization peak can then be related to Tc. In Case III, there is crystallization on quenching, and additional crystallization during the DSC run; the change of area of the crystallization peak is indicative of Tc. From these observations, the phase diagram of the system was determined. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Thermosetting blends composed of phloroglucinol‐cured bisphenol S epoxy resin and poly(ethylene oxide) (PEO) were prepared via the in situ curing reaction of epoxy in the presence of PEO, which started from initially homogeneous mixtures of diglycidyl ether of bisphenol S, phloroglucinol, and PEO. The miscibility of the blends after and before the curing reaction was established on the basis of thermal analysis (differential scanning calorimetry). Single and composition‐dependent glass‐transition temperatures (Tg's) were observed for all the blend compositions after and before curing. The experimental Tg's could be explained well by the Gordon–Taylor equation. Fourier transform infrared spectroscopy indicated that there were competitive hydrogen‐bonding interactions in the binary thermosetting blends upon the addition of PEO to the system, which was involved with the intramolecular and intermolecular hydrogen‐bonding interactions, that is, OH···O?S, OH···OH, and OH, versus ether oxygen atoms of PEO between crosslinked epoxy and PEO. On the basis of infrared spectroscopy results, it was judged that from weak to strong the strength of the hydrogen‐bonding interactions was in the following order: OH···O?S, OH···OH, and OH versus ether oxygen atoms of PEO. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 359–367, 2005  相似文献   

12.
The miscibility of blends of semicrystalline poly(vinylidene fluoride)(PVF2) and poly(vinyl methyl ketone) (PVMK) along with surface characterization were investigated using the inverse gas chromatography method (IGC), over a range of blend compositions and temperatures. Three chemically different families, alkanes, acetates, and alcohols, were utilized for this study. The values of the PVF2‐PVMK interaction parameters were found to be slightly positive for most of the solutes used, although some degree of miscibility was found at all compositions. Miscibility was greatest at a 50:50 w/w composition of the blend. The interaction parameters obtained from IGC are in excellent agreement with those obtained using calorimetry on the same blends. The calculated molar heat of sorption of alkanes, acetates, and alcohols into the blend layer reveal the impact of the combination of dispersive and hydrogen bonding forces on the interaction of solutes with the blend's backbone. The dispersive component of the surface energy was found to range from 18.70–64.30 mJ/m2 in the temperature range of 82–163 °C. A comparison of the blend's surface energy with that of mercury and other polymers is given. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1155–1166, 2000  相似文献   

13.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the DE hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003  相似文献   

14.
This paper describes a method to obtain polymer blends by the absorption of a liquid solution of monomer, initiator, and a crosslinking agent in suspension type porous poly(vinyl chloride) (PVC) particles, forming a dry blend. These PVC/monomer dry blends are reactively polymerized in a twin‐screw extruder to obtain the in situ polymerization in a melt state of various blends: PVC/poly(methyl methacrylate) (PVC/PMMA), PVC/poly(vinyl acetate) (PVC/PVAc), PVC/poly(butyl acrylate) (PVC/PBA) and PVC/poly(ethylhexyl acrylate) (PVC/PEHA). Physical PVC/PMMA blends were produced, and the properties of those blends are compared to reactive blends of similar compositions. Owing to the high polymerization temperature (180°C), the polymers formed in this reactive polymerization process have low molecular weight. These short polymer chains plasticize the PVC phase reducing the melt viscosity, glass transition and the static modulus. Reactive blends of PVC/PMMA and PVC/PVAc are more compatible than the reactive PVC/PBA and PVC/PEHA blends. Reactive PVC/PMMA and PVC/PVAc blends are transparent, form single phase morphology, have single glass transition temperature (Tg), and show mechanical properties that are not inferior than that of neat PVC. Reactive PVC/PBA and PVC/PEHA blends are incompatible and two discrete phases are observed in each blend. However, those blends exhibit single glass transition owing to low content of the dispersed phase particles, which is probably too low to be detected by dynamic mechanical thermal analysis (DMTA) as a separate Tg value. The reactive PVC/PEHA show exceptional high elongation at break (~90%) owing to energy absorption optimized at this dispersed particle size (0.2–0.8 µm). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A truly miscible ternary miscible blend consisting of poly(?‐caprolactone) (PCL), poly(phenyl methacrylate), and poly(benzyl methacrylate) (PBzMA) was discovered. The three‐polymer blend system was completely miscible within the entire composition range at ambient temperature up to about 150 °C, and ternary phase diagrams at increasing temperatures were characterized and interpreted. A ternary‐interaction model based on the modified Flory–Huggins expression was used to describe the phase diagrams with the individual binary interaction strengths. The model fitted well with the experimental‐phase diagram for the ternary blend system at T = 250 °C, where the binary PCL‐PBzMA blend system is on the critical points of phase separation. Interpretation of discrepancy between the model and experimental at other temperatures was handled with an empirical approach. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 747–754, 2002  相似文献   

16.
Poly(hydroxyether of phenolphthalein) (PPH) was synthesized through the polycondensation of phenolphthalein with epichlorohydrin. It was characterized by Fourier transform infrared (FTIR) spectroscopy, NMR spectroscopy, and differential scanning calorimetry (DSC). The miscibility of the blends of PPH with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PPH/PEO blends prepared via casting from N,N‐dimethylformamide possessed single, composition‐dependent glass‐transition temperatures. Therefore, the blends were miscible in the amorphous state for all compositions. FTIR studies indicated that there were competitive hydrogen‐bonding interactions with the addition of PEO to the system, which were involved with OH…O?C〈, ? OH…? OH, and ? OH vs ether oxygen atoms of PEO hydrogen bonding, that is both intramolecular and intermolecular, between PPH and PEO). Some of the hydroxyl stretching vibration bands significantly shifted to higher frequencies, whereas others shifted to lower frequencies, and this suggested the formation of hydrogen bonds between the pendant hydroxyls of PPH and ether oxygen atoms of PEO, which were stronger than the intramolecular hydrogen bonding between hydroxyls and carbonyls of PPH. The FTIR spectra in the range of carbonyl stretching vibrations showed that the hydroxyl‐associated carbonyl groups were partially set free because of the presence of the competitive hydrogen‐bonding interactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 466–475, 2003  相似文献   

17.
18.
The intermolecular interactions between poly(vinyl chloride) (PVC) and poly(vinyl acetate) (PVAc) in tetrahydrofuran (THF), methyl ethyl ketone (MEK) and N,N-dimethylformamide (DMF) were thoroughly investigated by the viscosity measurement. It has been found that the solvent selected has a great influence upon the polymer-polymer interactions in solution. If using PVAc and THF, or PVAc and DMF to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+THF) or (PVAc+DMF) is less than in corresponding pure solvent of THF or DMF. On the contrary, if using PVAc and MEK to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+MEK) is larger than in pure solvent of MEK. The influence of solvent upon the polymer-polymer interactions also comes from the interaction parameter term Δb, developed from modified Krigbaum and Wall theory. If PVC/PVAc blends with the weight ratio of 1/1 was dissolved in THF or DMF, Δb<0. On the contrary, if PVC/PVAc blends with the same weight ratio was dissolved in MEK, Δb>0. These experimental results show that the compatibility of PVC/PVAc blends is greatly associated with the solvent from which polymer mixtures were cast. The agreement of these results with differential scanning calorimetry measurements of PVC/PVAc blends casting from different solvents is good.  相似文献   

19.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

20.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号