首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A graph H is a cover of a graph G if there exists a mapping φ from V( H ) onto V( G ) such that φ maps the neighbors of every vertex υ in H bijectively to the neighbors of φ(υ) in G . Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the results of Archdeacon, Fellows, Negami, and the author that the conjecture holds as long as K 1,2,2,2 has no finite planar cover. However, this is still an open question, and K 1,2,2,2 is not the only minor‐minimal graph in doubt. Let ??4 (?2) denote the graph obtained from K 1,2,2,2 by replacing two vertex‐disjoint triangles (four edge‐disjoint triangles) not incident with the vertex of degree 6 with cubic vertices. We prove that the graphs ??4 and ?2 have no planar covers. This fact is used in [P. Hlin?ný, R. Thomas, On possible counterexamples to Negami's planar cover conjecture, 1999 (submitted)] to show that there are, up to obvious constructions, at most 16 possible counterexamples to Negami's conjecture. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 227–242, 2001  相似文献   

2.
A graph H is a cover of a graph G, if there exists a mapping φ from V(H) onto V(G) such that for every vertex υ of G, φ maps the neighbors of υ in H bijectively onto the neighbors of φ(υ) in G. Negami conjectured in 1987 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. This conjecture is not completely solved yet, but partial results due to Archdeacon, Fellows, Negami, and the author are known. This article suggests another formulation of this conjecture that has a straightforward generalization to higher nonorientable surfaces, and provides some support for the generalized version. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 234–240 1999  相似文献   

3.
A graph G has a planar cover if there exists a planar graph H , and a homomorphism φ : HG that maps the neighbors of each vertex bijectively. Each graph that has an embedding in the projective plane also has a finite planar cover. Negami conjectured the converse in 1988. This conjecture holds as long as no minor-minimal nonprojective graph has a finite planar cover. From the list there remain only two cases not solved yet—the graphs K 4,4e and K 1,2,2,2. We prove the nonexistence of a finite planar cover of K 4,4e. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 51–60, 1998  相似文献   

4.
In 1988, Seiya Negami published a conjecture stating that a graph G has a finite planar cover (i.e. a homomorphism from some planar graph onto G which maps the vertex neighbourhoods bijectively) if and only if G embeds in the projective plane. Though the “if” direction is easy, and over ten related research papers have been published during the past 20 years of investigation, this beautiful conjecture is still open in 2008. We give a short accessible survey on Negami’s conjecture and all the (so far) published partial results, and outline some further ideas to stimulate future research towards solving the conjecture.  相似文献   

5.
The noncommuting graph ?(G) of a nonabelian finite group G is defined as follows: The vertices of ?(G) are represented by the noncentral elements of G, and two distinct vertices x and y are joined by an edge if xyyx. In [1], the following was conjectured: Let G and H be two nonabelian finite groups such that ?(G) ? ?(H); then ¦G¦ = ¦H¦. Here we give some counterexamples to this conjecture.  相似文献   

6.
A b-coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbour in all other color classes. The b-chromatic number of a graph G is the largest integer k such that G admits a b-coloring with k colors. A graph is b-perfect if the b-chromatic number is equal to the chromatic number for every induced subgraph H of G. A graph is minimally b-imperfect if it is not b-perfect and every proper induced subgraph is b-perfect. We give a list of minimally b-imperfect graphs, conjecture that a graph is b-perfect if and only if it does not contain a graph from this list as an induced subgraph, and prove this conjecture for diamond-free graphs, and graphs with chromatic number at most three.  相似文献   

7.
We investigate the question of which graphs have planar emulators (a locally-surjective homomorphism from some finite planar graph)—a problem raised already in Fellows? thesis (1985) and conceptually related to the better known planar cover conjecture by Negami (1986). For over two decades, the planar emulator problem lived poorly in a shadow of Negami?s conjecture—which is still open—as the two were considered equivalent. But, at the end of 2008, a surprising construction by Rieck and Yamashita falsified the natural “planar emulator conjecture”, and thus opened a whole new research field. We present further results and constructions which show how far the planar-emulability concept is from planar-coverability, and that the traditional idea of likening it to projective embeddability is actually very out-of-place. We also present several positive partial characterizations of planar-emulable graphs.  相似文献   

8.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

9.
An induced subgraph S of a graph G is called a derived subgraph of G if S contains no isolated vertices. An edge e of G is said to be residual if e occurs in more than half of the derived subgraphs of G. We introduce the conjecture: Every non-empty graph contains a non-residual edge. This conjecture is implied by, but weaker than, the union-closed sets conjecture. We prove that a graph G of order n satisfies this conjecture whenever G satisfies any one of the conditions: δ(G) ≤ 2, log2 n ≤ δ(G), n ≤ 10, or the girth of G is at least 6. Finally, we show that the union-closed sets conjecture, in its full generality, is equivalent to a similar conjecture about hypergraphs. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 155–163, 1997  相似文献   

10.
 A cubic graph G is uniquely edge-3-colorable if G has precisely one 1-factorization. It is proved in this paper, if a uniquely edge-3-colorable, cubic graph G is cyclically 4-edge-connected, but not cyclically 5-edge-connected, then G must contain a snark as a minor. This is an approach to a conjecture that every triangle free uniquely edge-3-colorable cubic graph must have the Petersen graph as a minor. Fiorini and Wilson (1976) conjectured that every uniquely edge-3-colorable planar cubic graph must have a triangle. It is proved in this paper that every counterexample to this conjecture is cyclically 5-edge-connected and that in a minimal counterexample to the conjecture, every cyclic 5-edge-cut is trivial (an edge-cut T of G is cyclic if no component of G\T is acyclic and a cyclic edge-cut T is trivial if one component of G\T is a circuit of length |T|). Received: July 14, 1997 Revised: June 11, 1998  相似文献   

11.
Let G be a 4-connected infinite planar graph such that the deletion of any finite set of vertices of G results in at most one infinite component. We prove a conjecture of Nash-Williams that G has a 1-way infinite spanning path. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
A graph G is a quasi‐line graph if for every vertex vV(G), the set of neighbors of v in G can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. Hadwiger's conjecture states that if a graph G is not t‐colorable then it contains Kt + 1 as a minor. This conjecture has been proved for line graphs by Reed and Seymour. We extend their result to all quasi‐line graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 17–33, 2008  相似文献   

13.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

14.
The clique number of an undirected graph G is the maximum order of a complete subgraph of G and is a well‐known lower bound for the chromatic number of G. Every proper k‐coloring of G may be viewed as a homomorphism (an edge‐preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this article, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth k for all .  相似文献   

15.
The toughness indexτ(G) of a graph G is defined to be the largest integer t such that for any S ? V(G) with |S| > t, c(G - S) < |S| - t, where c(G - S) denotes the number of components of G - S. In particular, 1-tough graphs are exactly those graphs for which τ(G) ≥ 0. In this paper, it is shown that if G is a planar graph, then τ(G) ≥ 2 if and only if G is 4-connected. This result suggests that there may be a polynomial-time algorithm for determining whether a planar graph is 1-tough, even though the problem for general graphs is NP-hard. The result can be restated as follows: a planar graph is 4-connected if and only if it remains 1-tough whenever two vertices are removed. Hence it establishes a weakened version of a conjecture, due to M. D. Plummer, that removing 2 vertices from a 4-connected planar graph yields a Hamiltonian graph.  相似文献   

16.
We present a new graph composition that produces a graph G from a given graph H and a fixed graph B called gear and we study its polyhedral properties. This composition yields counterexamples to a conjecture on the facial structure of when G is claw-free.  相似文献   

17.
A graph G is perfect if for every induced subgraph H of G the chromatic number χ(H) equals the largest number ω(H) of pairwise adjacent vertices in H. Berge's famous Strong Perfect Graph Conjecture asserts that a graph G is perfect if and only if neither G nor its complement G¯ contains an odd chordless cycle of length at least 5. Its resolution has eluded researchers for more than 20 years. We prove that the conjecture is true for a class of graphs that we describe by forbidden configurations.  相似文献   

18.
An L-list coloring of a graph G is a proper vertex coloring in which every vertex v gets a color from a list L(v) of allowed colors. G is called k-choosable if all lists L(v) have exactly k elements and if G is L-list colorable for all possible assignments of such lists. Verifying conjectures of Erdos, Rubin and Taylor it was shown during the last years that every planar graph is 5-choosable and that there are planar graphs which are not 4-choosable. The question whether there are 3-colorable planar graphs which are not 4-choosable remained unsolved. The smallest known example far a non-4-choosable planar graph has 75 vertices and is described by Gutner. In fact, this graph is also 3 colorable and answers the above question. In addition, we give a list assignment for this graph using 5 colors only in all of the lists together such that the graph is not List-colorable. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
For every graph H, there exists a polynomial-time algorithm deciding if a planar input graph G can be contracted to H. However, the degree of the polynomial depends on the size of H. We identify a class of graphs C such that for every fixed HC, there exists a linear-time algorithm deciding whether a given planar graph G can be contracted to H. The class C is the closure of planar triangulated graphs under taking of contractions. In fact, we prove that a graph HC if and only if there exists a constant cH such that if the treewidth of a graph is at least cH, it contains H as a contraction. We also provide a characterization of C in terms of minimal forbidden contractions.  相似文献   

20.
In this paper, the notion of relative chromatic number χ(G, H) for a pair of graphs G, H, with H a full subgraph of G, is formulated; namely, χ(G, H) is the minimum number of new colors needed to extend any coloring of H to a coloring of G. It is shown that the four color conjecture (4CC) is equivalent to the conjecture (R4CC) that χ(G, H) ≤ 4 for any (possibly empty) full subgraph H of a planar graph G and also to the conjecture (CR3CC) that χ(G, H) ≤ 3 if H is a connected and nonempty full subgraph of planar G. Finally, relative coloring theorems on surfaces other than the plane or sphere are proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号