首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we show that if G is a 3‐edge‐connected graph with and , then either G has an Eulerian subgraph H such that , or G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the Petersen graph contains at least one vertex in S. If G is a 3‐edge‐connected planar graph, then for any , G has an Eulerian subgraph H such that . As an application, we obtain a new result on Hamiltonian line graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 308–319, 2003  相似文献   

2.
The isoperimetric constant of a graph G on n vertices, i(G), is the minimum of , taken over all nonempty subsets SV (G) of size at most n/2, where S denotes the set of edges with precisely one end in S. A random graph process on n vertices, , is a sequence of graphs, where is the edgeless graph on n vertices, and is the result of adding an edge to , uniformly distributed over all the missing edges. The authors show that in almost every graph process equals the minimal degree of as long as the minimal degree is o(log n). Furthermore, it is shown that this result is essentially best possible, by demonstrating that along the period in which the minimum degree is typically Θ(log n), the ratio between the isoperimetric constant and the minimum degree falls from 1 to , its final value. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

3.
In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), we now call the Mycielskian of G, which has the same clique number as G and whose chromatic number equals χ(G) + 1. Chang, Huang, and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investigated circular chromatic numbers of Mycielskians for several classes of graphs. In this article, we study circular chromatic numbers of Mycielskians for another class of graphs G. The main result is that χc(μ(G)) = χ(μ(G)), which settles a problem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu, to appear]. As χc(G) = and χ(G) = , consequently, there exist graphs G such that χc(G) is as close to χ(G) − 1 as you want, but χc(μ(G)) = χ(μ(G)). © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 63–71, 1999  相似文献   

4.
Suppose r ≥ 2 is a real number. A proper r‐flow of a directed multi‐graph is a mapping such that (i) for every edge , ; (ii) for every vertex , . The circular flow number of a graph G is the least r for which an orientation of G admits a proper r‐flow. The well‐known 5‐flow conjecture is equivalent to the statement that every bridgeless graph has circular flow number at most 5. In this paper, we prove that for any rational number r between 2 and 5, there exists a graph G with circular flow number r. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 304–318, 2003  相似文献   

5.
Given a fixed multigraph H with V(H) = {h1,…, hm}, we say that a graph G is H‐linked if for every choice of m vertices v1, …, vm in G, there exists a subdivision of H in G such that for every i, vi is the branch vertex representing hi. This generalizes the notion of k‐linked graphs (as well as some other notions). For a family of graphs, a graph G is ‐linked if G is H‐linked for every . In this article, we estimate the minimum integer r = r(n, k, d) such that each n‐vertex graph with is ‐linked, where is the family of simple graphs with k edges and minimum degree at least . © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 14–26, 2008  相似文献   

6.
For any integer n, let be a probability distribution on the family of graphs on n vertices (where every such graph has nonzero probability associated with it). A graph Γ is ‐almost‐universal if Γ satisifies the following: If G is chosen according to the probability distribution , then G is isomorphic to a subgraph of Γ with probability 1 ‐ . For any p ∈ [0,1], let (n,p) denote the probability distribution on the family of graphs on n vertices, where two vertices u and v form an edge with probability p, and the events {u and v form an edge}; u,vV (G) are mutually independent. For k ≥ 4 and n sufficiently large we construct a ‐almost‐universal‐graph on n vertices and with O(n)polylog(n) edges, where q = ? ? for such k ≤ 6, and where q = ? ? for k ≥ 7. The number of edges is close to the lower bound of Ω( ) for the number of edges in a universal graph for the family of graphs with n vertices and maximum degree k. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

7.
The critical group of a connected graph is a finite abelian group, whose order is the number of spanning trees in the graph, and which is closely related to the graph Laplacian. Its group structure has been determined for relatively few classes of graphs, e.g., complete graphs and complete bipartite graphs. For complete multipartite graphs , we describe the critical group structure completely. For Cartesian products of complete graphs , we generalize results of H. Bai on the k-dimensional cube, by bounding the number of invariant factors in the critical group, and describing completely its p-primary structure for all primes p that divide none of . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 231–250, 2003  相似文献   

8.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S (other than itself). The maximum cardinality of a minimal total dominating set of G is the upper total domination number of G, denoted by Γt(G). We establish bounds on Γt(G) for claw‐free graphs G in terms of the number n of vertices and the minimum degree δ of G. We show that if if , and if δ ≥ 5. The extremal graphs are characterized. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 148–158, 2003  相似文献   

9.
Given lists of available colors assigned to the vertices of a graph G, a list coloring is a proper coloring of G such that the color on each vertex is chosen from its list. If the lists all have size k, then a list coloring is equitable if each color appears on at most vertices. A graph is equitably k-choosable if such a coloring exists whenever the lists all have size k. We prove that G is equitably k-choosable when unless G contains or k is odd and . For forests, the threshold improves to . If G is a 2-degenerate graph (given k ≥ 5) or a connected interval graph (other than ), then G is equitably k-choosable when . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 166–177, 2003  相似文献   

10.
In this paper we study the determinacy strength of infinite games in the Cantor space and compare them with their counterparts in the Baire space. We show the following theorems: 1. RCA0 ? ‐Det* ? ‐Det* ? WKL0. 2. RCA0 ? ( )2‐Det* ? ACA0. 3. RCA0 ? ‐Det* ? ‐Det* ? ‐Det ? ‐Det ? ATR0. 4. For 1 < k < ω, RCA0 ? ( )k ‐Det* ? ( )k –1‐Det. 5. RCA0 ? ‐Det* ? ‐Det. Here, Det* (respectively Det) stands for the determinacy of infinite games in the Cantor space (respectively the Baire space), and ( )k is the collection of formulas built from formulas by applying the difference operator k – 1 times. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A homomorphism from an oriented graph G to an oriented graph H is a mapping from the set of vertices of G to the set of vertices of H such that is an arc in H whenever is an arc in G. The oriented chromatic index of an oriented graph G is the minimum number of vertices in an oriented graph H such that there exists a homomorphism from the line digraph LD(G) of G to H (the line digraph LD(G) of G is given by V(LD(G)) = A(G) and whenever and ). We give upper bounds for the oriented chromatic index of graphs with bounded acyclic chromatic number, of planar graphs and of graphs with bounded degree. We also consider lower and upper bounds of oriented chromatic number in terms of oriented chromatic index. We finally prove that the problem of deciding whether an oriented graph has oriented chromatic index at most k is polynomial time solvable if k ≤ 3 and is NP‐complete if k ≥ 4. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 313–332, 2008  相似文献   

12.
Using a suitable orientation, we give a short proof of a strengthening of a result of Czumaj and Strothmann 4 : Every 2‐edge‐connected graph G contains a spanning tree T with the property that for every vertex v. As an analogue of this result in the directed case, we prove that every 2‐arc‐strong digraph D has an out‐branching B such that . A corollary of this is that every k‐arc‐strong digraph D has an out‐branching B such that , where . We conjecture that in this case would be the right (and best possible) answer. If true, this would again imply a strengthening of a result from 4 concerning spanning trees with small degrees in k‐connected graphs when k ≥ 2. We prove that for acyclic digraphs the existence of an out‐branching satisfying prescribed bounds on the out‐degrees of each vertex can be checked in polynomial time. A corollary of this is that the existence of arc‐disjoint branchings , , where the first is an out‐branching rooted at s and the second an in‐branching rooted at t, can be checked in polynomial time for the class of acyclic digraphs © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 297–307, 2003  相似文献   

13.
A p‐list assignment L of a graph G assigns to each vertex v of G a set of permissible colors. We say G is L‐(P, q)‐colorable if G has a (P, q)‐coloring h such that h(v) ? L(v) for each vertex v. The circular list chromatic number of a graph G is the infimum of those real numbers t for which the following holds: For any P, q, for any P‐list assignment L with , G is L‐(P, q)‐colorable. We prove that if G has an orientation D which has no odd directed cycles, and L is a P‐list assignment of G such that for each vertex v, , then G is L‐(P, q)‐colorable. This implies that if G is a bipartite graph, then , where is the maximum average degree of a subgraph of G. We further prove that if G is a connected bipartite graph which is not a tree, then . © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 190–204, 2008  相似文献   

14.
An Erratum has been published for this article in Journal of Graph Theory 50:261, 2005 . A graph property (i.e., a set of graphs) is hereditary (respectively, induced‐hereditary) if it is closed under taking subgraphs (resp., induced‐subgraphs), while the property is additive if it is closed under disjoint unions. If and are properties, the product consists of all graphs G for which there is a partition of the vertex set of G into (possibly empty) subsets A and B with G[A] and G[B] . A property is reducible if it is the product of two other properties, and irreducible otherwise. We show that very few reducible induced‐hereditary properties have a unique factorization into irreducibles, and we describe them completely. On the other hand, we give a new and simpler proof that additive hereditary properties have a unique factorization into irreducible additive hereditary properties [J. Graph Theory 33 (2000), 44–53]. We also introduce analogs of additive induced‐hereditary properties, and characterize them in the style of Scheinerman [Discrete Math. 55 (1985), 185–193]. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 11–27, 2005  相似文献   

15.
The generalized Randi?; index of a tree T is the sum over the edges of T of where is the degree of the vertex x in T. For all , we find the minimal constant such that for all trees on at least 3 vertices, , where is the number of vertices of T. For example, when . This bound is sharp up to the additive constant—for infinitely many n we give examples of trees T on n vertices with . More generally, fix and define , where is the number of leaves of T. We determine the best constant such that for all trees on at least 3 vertices, . Using these results one can determine (up to terms) the maximal Randi?; index of a tree with a specified number of vertices and leaves. Our methods also yield bounds when the maximum degree of the tree is restricted. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 270–286, 2007  相似文献   

16.
For a graph G, a subset of vertices D is a dominating set if for each vertex X not in D, X is adjacent to at least one vertex of D. The domination number, γ(G), is the order of the smallest such set. An outstanding conjecture in the theory of domination is for any two graph G and H, One result presented in this paper settles this question in the case when at least one of G or H is a tree. We show that for all graphs G and any tree T. Furthermore, we supply a partial characterization for which pairs of trees, T1 and T2, strict inequality occurs. We show for almost all pairs of trees.  相似文献   

17.
Given a set of graphs, a graph G is ‐free if G does not contain any member of as an induced subgraph. We say that is a degree‐sequence‐forcing set if, for each graph G in the class of ‐free graphs, every realization of the degree sequence of G is also in . We give a complete characterization of the degree‐sequence‐forcing sets when has cardinality at most two. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 131–148, 2008  相似文献   

18.
Chetwynd and Hilton showed that any regular graph G of even order n which has relatively high degree has a 1‐factorization. This is equivalent to saying that under these conditions G has chromatic index equal to its maximum degree . Using this result, we show that any (not necessarily regular) graph G of even order n that has sufficiently high minimum degree has chromatic index equal to its maximum degree providing that G does not contain an “overfull” subgraph, that is, a subgraph which trivially forces the chromatic index to be more than the maximum degree. This result thus verifies the Overfull Conjecture for graphs of even order and sufficiently high minimum degree. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 73–80, 2004  相似文献   

19.
The interval number of a graph G, denoted by i(G), is the least natural number t such that G is the intersection graph of sets, each of which is the union of at most t intervals. Here we settle a conjecture of Griggs and West about bounding i(G) in terms of e, that is, the number of edges in G. Namely, it is shown that i(G) ≤ + 1. It is also observed that the edge bound induces i(G) ≤ , where γ(G) is the genus of G. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 153–159, 1999  相似文献   

20.
For m ≥ 1 and p ≥ 2, given a set of integers s1,…,sq with for and , necessary and sufficient conditions are found for the existence of a hamilton decomposition of the complete p-partite graph , where U is a 2-factor of consisting of q cycles, the jth cycle having length sj. This result is then used to completely solve the problem when p = 3, removing the condition that . © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 208–214, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号