首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The leaching behaviors of heavy metals from semi‐dry scrubber (SDS) residues of municipal solid waste incineration (MSWI) plants are re‐investigated. The most leachable heavy metals in semi‐dry scrubber residues from municipal solid waste incinerators are found to be chromium ions (Cr(III) and Cr(VI)), but neither lead nor cadmium. Both of the leachabilities of Cr(III) and Cr(VI) in MSWI scrubber residue are a function of the CaO/Al2O3 ratio of residues. The pH‐dependent leaching behaviors are only observed in the case of Cr(III), but not for Cr(VI). Our results show that it is worth recycling SDS residues which possess a lower chemical composition ratio of CaO/Al2O3, in order to reduce the potential risk of toxic leaching of chromium species.  相似文献   

2.
The liquid precipitation method using zinc acetate dihydrate was applied for the synthesis of uniform and spherical ZnO nanoparticles. The ultrafine zinc oxid was prepared in a water‐ethanol mixture solution. The solution containing zinc cation was soluble in water. The surface‐active agent triethanolamine (TEA) was soluble in ethanol. Then alkali precipitated by adding n‐propylamine. The spherical zinc oxide particle morphology was found to be highly dependent on the zinc salt concentration, ethanol‐water ratio, and the surface‐active agent additive. The process can produce white ZnO powder of 50–90 nm in size. The morphology of zinc oxide showed a powder shape by transmission electron microscopy (TEM), the crystallization phase structure of zinc oxide by X‐ray diffraction (XRD), and the zinc oxide remaining by using an organic analysis by infrared spectroscopy (IR).  相似文献   

3.
Leachants from the toxic characteristic leaching procedure (TCLP) of combustion residues, fly ash, usually contain calcium and lead ions as high as to 12000 and 1000 ppm, respectively. In this paper, the authors used a commercialized lead(II) ionic‐selective electrode (Pb‐ISE) to measure the lead(II) concentrations in such leachants and observed a serious interference from calcium(II) ions. The interference starts at the concentration ratio of ([Ca]/[Pb]) in the sample over 2.0. Reasons for the interference are not clear, but it can be suppressed by adding a chemical modifier, HCl(aq) solution, into the sample. The authors have found that the optimized addition amount in TCLP leachants is 4 mL of HCl(aq) per 20 mL sample, and the detection limit of the Pb‐ISE was 5.2 ppm.  相似文献   

4.
Palm leaf ash was characterized and used as low‐cost adsorbent for solid‐phase extraction and preconcentration of bisphenol A (BPA) in real water samples. Analysis of BPA was carried out using HPLC involving Eurospher 100–5‐C18 (25 cm × 4.5 mm, particle size 5 μm) column and water–acetonitrile (40:60, v/v) as mobile phase. The adsorption was achieved quantitatively at a pH of 6 with elution by 3 mL acetonitrile. The limits of detection and enrichment factor were 0.02 μg L?1 and 333, respectively. Under optimum conditions the relative standard deviation (RSD) was 2% (n = 10). Comparison of qualification criteria of presented preconcentration procedure with other research indicated that palm leaf ash adsorbent was better than many of the adsorbents in terms of cost and reusability. Also, the limit of detection, precision and enrichment factor were comparable and even better than the previously reported methods. Finally, the efficiency of method was computed by determination of trace amounts of BPA in sea, river, mineral and tap waters with recoveries of 93.3–105.5% and RSDs of 0.61–3.12%.. Briefly, the developed solid‐phase extraction and Preparative layer chromatography (PLC) methods may be used for bisphenol A monitoring in any environmental water sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A new type of water‐soluble ionic cellulose was obtained by means of the dissolution of cellulose in dimethylimidazolium methylphosphite at elevated temperatures over 120 °C. FTIR spectroscopy, 1H and 13C NMR spectroscopy, and elemental analysis results revealed that the repeating unit of the water‐soluble cellulose consists of a dialkylimidazolium cation and a phosphite anion bonded to cellulose. The degree of phosphorylation on the cellulose chain was between 0.4 and 1.3 depending on the reaction temperature and time. With an increasing degree of phosphorylation, water solubility was increased. Scanning electron microscopy and X‐ray diffraction analyses revealed that the cellulose crystalline phase in the parent crystalline cellulose changed to an amorphous phase upon transformation into ionic cellulose. Thermogravimetric analysis showed the prepared phosphorylated cellulose was stable over 250 °C and a substantial amount of residue remained at 500 °C.  相似文献   

6.
A series of pyrrolidone‐based polymers is prepared from pyroglutamic acid, a bio‐derived resource. Polymers bearing simple alkoxy substituents (e.g., methoxy, ethoxy, and butoxy) are soluble in common organic solvents and possess glass transition temperatures that are dependent on the length of the alkoxy residue. Replacing these substituents with an ether moiety (CH3OCH2CH2O—) affords a highly sensitive and reversible thermoresponsive polymer with a lower critical solution temperature (LCST) of 42 °C in water. Copolymers composed of repeat units bearing both the ether and simple alkoxy residues are found to exhibit LCSTs that are highly dependent on the nature of the hydrophobic alkoxy residue suggesting that the LCSTs of these polymers can be successfully tuned by simply tailoring the copolymer structure.  相似文献   

7.
In this study a simple and rapid sample preparation technique, homogeneous liquid–liquid extraction based on phase separation in the presence of a salt performed in a narrow‐bore tube, followed by GC‐flame ionization detection has been developed. In this work, sodium chloride and ACN were used as the salting‐out agent and water‐soluble extraction solvent, respectively. The homogeneous solution of water and ACN was broken by addition of the salt. Small volume of ACN was collected on top of the tube and the extracted analytes in the collected phase were determined. It has been successfully used for the analysis of five phthalate esters as model compounds in aqueous sample. Experimental parameters affecting the extraction efficiency such as kind and volume of the water‐soluble organic solvent, length and diameter of the tube, and pH of the sample solution were investigated. Under the optimal conditions, the LODs were between 0.02 and 0.7 μg/L and enrichment factors were in the range of 172–309. In addition, good linearity (between 1 and 5000 μg/L) and high precision on the base of RSD (<8%, C = 600 μg/L, n = 6) were achieved.  相似文献   

8.
This work presents a new extraction material, namely, Q‐100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid‐phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q‐100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid‐phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q‐100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid‐phase extraction using Q‐100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample.  相似文献   

9.
This study aimed to develop a rapid, specific and sensitive method for the residue determination of benzo‐1,2,3‐thiadiazole‐7‐carboxylic acid 2‐benzoyloxyethyl ester in soil, vegetable, and water by using gas chromatography with tandem mass spectrometry. During the extraction procedure, modified quick, easy, cheap, effective, rugged, and safe method using acetonitrile was compared with classical oscillating extraction using ethyl acetate and acetone, respectively. Before injection, a solid‐phase extraction cartridge of Bond Elut Florisil was used for sample clean‐up. The method was fully validated and showed satisfactory linearity (r2 > 0.99) over the range to be assayed (10–1000 ng/mL), with the limits of detection ranging from 0.092–0.229 ng/mL and the limits of quantification ranging from 0.307–0.763 ng/mL. Recovery values at the spiked concentrations of 10, 100 and 1000 ng/g varied from 85.9–109.3%, 81.0–108.2%, 74.2–113.4% for water, soil and vegetable, respectively, with the maximum relative standard deviations of 12.2%. Results indicated that the established modified quick, easy, cheap, effective, rugged, and safe method coupled to gas chromatography with tandem mass spectrometry was promising for the residue monitoring of benzo‐1,2,3‐thiadiazole‐7‐carboxylic acid 2‐benzoyloxyethyl ester in the environment and vegetable products.  相似文献   

10.
MOGHIMI  Ali 《中国化学》2007,25(10):1536-1541
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.  相似文献   

11.
This study aimed to seek an efficient method to extract and purify yunaconitine and 8‐deacetylyunaconitine from Aconitum vilmorinianum Kom. by accelerated solvent extraction combined with pH‐zone‐refining counter‐current chromatography. The major extraction parameters for accelerated solvent extraction were optimized by an orthogonal test design L9 (3)4. Then a separation and purification method was established using pH‐zone‐refining counter‐current chromatography with a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (5:5:2:8, v/v) with 10 mM triethylamine in the upper phase and 10 mM HCl in the lower phase. From 2 g crude extract, 224 mg of 8‐deacetylyunaconitine (I) and 841 mg of yunaconitine (II) were obtained with a purity of over 98.0%. The chemical structures were identified by ESI‐MS and 1H and 13C NMR spectroscopy.  相似文献   

12.
Antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative to the most focused mammal antibodies, because they can be obtained in higher titers by less invasive approaches. However, the production cost of high‐quality IgY for large‐scale applications remains higher than that of other drug therapies due to the lack of efficient purification methods. The search for new purification platforms is thus vital. The solution could be liquid–liquid extraction by using aqueous biphasic systems (ABS). Herein, we report the extraction and attempted purification of IgY from chicken egg yolk by using a new ABS composed of polymers and Good’s buffer ionic liquids (GB‐ILs). New self‐buffering and biocompatible ILs based on the cholinium cation and anions derived from Good’s buffers were synthesized and the self‐buffering characteristics and toxicity were characterized. Moreover, when these GB‐ILs are combined with PPG 400 (poly(propylene) glycol with a molecular weight of 400 g mol‐1) to form ABS, extraction efficiencies, of the water‐soluble fraction of proteins, ranging between 79 and 94 % were achieved in a single step. Based on computational investigations, we also demonstrate that the preferential partitioning of IgY for the GB‐IL‐rich phase is dominated by hydrogen‐bonding and van der Waals interactions.  相似文献   

13.
Nanocapsules with an oily core and an organic/inorganic hybrid shell were elaborated by miniemulsion (co)polymerization of styrene, divinylbenzene, γ‐methacryloyloxy propyl trimethoxysilane, and N‐isopropyl acrylamide. The hybrid copolymer shell membrane was formed by polymerization‐induced phase separation at the interface of the oily nanodroplets with water. It was shown that the size, size distribution, and colloidal stability of the miniemulsion droplets were extremely dependent on the nature of the oil phase, the monomer content and the surfactant concentration. The less water‐soluble the hydrocarbon template and the higher the monomer content, the better the droplet stability. The successful formation of nanocapsules with the targeted core‐shell morphology (i.e., a liquid core surrounded by a solid shell) was evidenced by cryogenic transmission electron microscopy. Both nanocapsules and nanoparticles were produced by polymerization of the miniemulsion droplets. The proportion of nanoparticles increased with increasing monomer concentration in the oil phase. These undesirable nanoparticles were presumably formed by homogeneous nucleation as we showed that micellar nucleation could be neglected under our experimental conditions even for high surfactant concentrations. The introduction of γ‐methacryloyloxy propyl trimethoxysilane was considered to be the main reason for homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 593–603, 2010  相似文献   

14.
Thermoresponsive materials with a lower critical solution temperature (LCST) are receiving growing attention, of which examples of non‐polymeric small molecules are limited. Monodisperse oligoethylene glycol amphiphiles that contain aromatic units with a LCST in water have been developed and applied to peptide extraction. Concentration‐dependent hysteretic transmittance changes were observed in response to temperature elevation and reduction. Dynamic light scattering measurements and phase contrast microscopy revealed the formation of micrometer‐sized aggregates upon heating at a concentration above 5.0 mM ; these aggregates self‐assembled to form larger aggregates upon cooling before dissolution. The “interaggregate” interactions are likely to cause the hysteretic behavior. As an application of this thermodriven phase separation, selective extraction of peptide fragments containing high percentages of hydrophobic and aromatic amino acid residues was successfully demonstrated.  相似文献   

15.
Herein, we introduce a facile, user‐ and environmentally friendly (n‐octanol‐induced) oleic acid (OA)/ionic liquid (IL) two‐phase system for the phase‐ and size‐controllable synthesis of water‐soluble hexagonal rare earth (RE=La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) and n‐octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n‐octanol‐induced) OA/IL two‐phase system, the formation of the RE fluoride nanocrystals, and the distinctive size‐ and morphology‐controlling capacity of the system are presented. BmimPF6 is versatile in term of crystal‐phase manipulation, size and shape maintenance, and providing water solubility in a one‐step reaction. The luminescent properties of Er3+‐, Ho3+‐, and Tm3+‐doped LaF3, NaGdF4, and NaYF4 nanocrystals were also studied. It is worth noting that the as‐prepared products can be directly dispersed in water due to the hydrophilic property of Bmim+ (cationic part of the IL) as a capping agent. This advantageous feature has made the IL‐capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF4:Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

16.
A method of simultaneous separation of water‐ and fat‐soluble vitamins using pressure‐assisted CEC with a methacrylate‐based capillary monolithic column was developed. In the proposed method, water‐soluble vitamins were mainly separated electrophoretically, while fat soluble‐ones were separated chromatographically by the interaction with a methacrylate‐based monolith. A mixture of six water‐soluble and four fat‐soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed.  相似文献   

17.
ZnSe colloidal nanoparticles prepared by the air‐insensitive starting reagents, zinc chloride and selenium powder, have been size‐selected in the Pluronic amphiphilic triblock copolymer [(EO)x(PO)y(EO)x] systems. The size‐selection mechanism between the ZnSe nanoparticles and the triblock copolymers systems is a thermodynamic‐dependent effect. We observe that nanoparticles with special volume (Vs) are trapped first by the triblock copolymers due to the faster entropic depletion interaction arising from the addition of surfactant‐template (micelles) to colloidal nanoparticles. On the other hand, nanoparticles with sizes larger or smaller than Vs will not interact with the surfactant‐templates. They either precipitate quickly by gravity (larger than Vs) or still retain their thermal motion in the aqueous phase (smaller than Vs) when Vs nanoparticles are caught by the surfactant‐templates.  相似文献   

18.
To pursue optimum condition in liquid‐liquid‐liquid microextraction (LLLME), extraction parameters dominating extraction efficiency were investigated by theoretical considerations. The theoretical considerations discussed equilibrium model for equilibrium LLLME and non‐equilibrium model for dynamic LLLME. A method described here is a dynamic LLLME technique combined with high‐performance liquid‐chromatography ultraviolet absorbance detection (HPLC/UV) to determine traces of nitrophenols in water. Analytical parameters such as organic phase, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and absorption wavelength were identified as variable settings. Relative standard deviation (RSD, 1.8‐4.4%), coefficient of estimation (R2, 0.9994‐0.9999), and detection limit (0.032‐0.065 ng mL?1) were achieved under the variable settings. The proposed method was successfully applied to the analysis of a lake water sample, and the relative recoveries of nitrophenols from spiked water sample were up to 92.5%. The variable settings of LLLME close to optimization was responsible for an acceptable extraction efficiency.  相似文献   

19.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

20.
Amphiphilic polymeric particles with hydrophobic cores and hydrophilic shells were prepared via living radical emulsion polymerization of styrene using a water‐soluble poly(acrylamide)‐based macro‐RAFT agent in aqueous solution in the absence of any surfactants. Firstly, the homopolymerization of acrylamide (AM) was carried out in aqueous phase by reversible addition‐fragmentation chain transfer radical polymerization (RAFT) using a trithiocarbonate as a chain transfer agent. Then the PAM‐based macro‐RAFT agent has been used as a water‐soluble macromolecular chain transfer agent in the batch emulsion polymerization of Styrene (St) free of surfactants. The RAFT controlled growth of hydrophobic block led to the formation of well‐defined poly(acrylamide)‐copolystyrene amphiphilic copolymer, which was able to work as a polymeric stabilizer (self‐stability). Finally, very stable latex was prepared, having no visible phase separation for several months. FTIR and 1H‐NMR measurements showed that the product was the block copolymer PAM‐co‐PS in the form of stable latex. Atomic force microscope (AFM), transmission electron microscope (TEM), and dynamic light scattering (DLS) studies indicated that the nanoparticles have a narrow particle size distribution and the average particle hydrodynamic radius was kept in the diameter of 58 nm. Core‐shell structure of the copolymer was also recorded by TEM. The mechanism of the self‐stability of polymer particles during the polymerization in the absence of surfactants was studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3098–3107, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号