首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The paper analyses long time behaviour of solutions of the Navier–Stokes equations in a two‐dimensional pipe‐like domain. The system is studied with perfect slip boundary conditions with arbitrary inflow conditions at infinity. The main results show the existence of global in time solutions and of an attractor for the dynamical system generated by the model. The paper also establishes an upper bound for the Hausdorff dimension of the attractor. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In this article, we consider the initial boundary value problem for a class of nonlinear pseudo‐parabolic equations with a memory term: Under suitable assumptions, we obtain the local and global existence of the solution by Galerkin method. We prove finite‐time blow‐up of the solution for initial data at arbitrary energy level and obtain upper bounds for blow‐up time by using the concavity method. In addition, by means of differential inequality technique, we obtain a lower bound for blow‐up time of the solution if blow‐up occurs.  相似文献   

3.
Dorodnicyn’s generalized method of integral relations is used to compute a Verigin-type single-phase unsteady flow in a porous medium. This problem describes the pumping of a gas through a gallery in a bounded horizontal aquifer and is associated with underground gas storage in aquifers. The case of an isothermal process and an ideal gas are considered. The viscosity of the gas is neglected. Sines are used as smoothing functions. The results obtained in the first and third approximations are presented and analyzed. The solution is compared with a finite-difference solution and that produced by the method of integral relations. The results are given in a table.  相似文献   

4.
We consider a non‐stationary Stokes system in a thin porous medium Ω? of thickness ? which is perforated by periodically solid cylinders of size a ? . We are interested here to give the limit behavior when ? goes to zero. To do so, we apply an adaptation of the unfolding method. Time‐dependent Darcy's laws are rigorously derived from this model depending on the comparison between a ? and ? . Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We study the convergence of a finite volume scheme for a model of miscible two‐phase flow in porous media. In this model, one phase can dissolve into the other one. The convergence of the scheme is proved thanks to an estimate on the two pressures, which allows to prove some estimates on the discrete time derivative of some nonlinear functions of the unknowns. Monotony arguments allow to show some properties on the limits of these functions. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the space term. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 723–748, 2014  相似文献   

6.
We study the homogenization of a slow viscous two‐phase incompressible flow in a domain consisting of a free fluid domain, a porous medium, and the interface between them. We take into account the capillary forces on the fluid‐fluid interfaces. We construct boundary layers describing the flow at the interface between the free fluid and the porous medium. We derive a macroscopic model with a viscous two‐phase fluid in the free domain, a coupled Darcy law connecting two‐phase velocities in the porous medium, and boundary conditions at the permeable interface between the free fluid domain and the porous medium.  相似文献   

7.
The Dirichlet problem for a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle is considered. The higher order derivatives of the equations are multiplied by a perturbation parameter ?2, where ? takes arbitrary values in the interval (0, 1]. When ? vanishes, the system of parabolic equations degenerates into a system of ordinary differential equations with respect to t. When ? tends to zero, a parabolic boundary layer with a characteristic width ? appears in a neighborhood of the boundary. Using the condensing grid technique and the classical finite difference approximations of the boundary value problem, a special difference scheme is constructed that converges ?-uniformly at a rate of O(N ?2ln2 N + N 0 ?1 , where \(N = \mathop {\min }\limits_s N_s \), N s + 1 and N 0 + 1 are the numbers of mesh points on the axes x s and t, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号