首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently we proposed a new feedback control algorithm for quantities describing global features of non‐linear dynamical systems. The performance of the algorithm, which is based on the concepts of non‐Lipschitzian dynamics and global targeting, has been successfully demonstrated for systems confined to one spatial dimension and for a specific targeted global quantity, namely the velocity of the centre of mass. In this paper we extend the scope of the non‐Lipschitzian control scheme to multi‐dimensional systems and different targeted quantities. We illustrate the efficiency of the non‐Lipschitzian feedback w.r.t. the ordinary (Lipschitzian) feedback, as well as the robustness and accuracy of the algorithm in a broad variety of control scenarios on the 2‐d Frenkel‐Kontorova model for nanofriction. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

2.
Pneumatic muscles are innovative tension actuators consisting of textile‐fibre reinforced vulcanised rubber tubing and connection flanges at both ends. They offer several advantages as compared to pneumatic cylinders: significantly less weight, no moving parts within the muscle, and higher maximum force. The main drawback is given by their non‐linear characteristics demanding for sophisticated non‐linear feedback control schemes. This contribution presents a non‐linear control concept for a carriage driven by two pneumatic muscles in parallel connection. First, the modelling of the muscle driven carriage is described in detail. For the resulting non‐linear model the differential flatness property is proven and utilised for a decoupled position and pressure trajectory control. Experimental results from an implementation of this flatness‐based control scheme at a test rig demonstrate the high tracking performance and point out the potential of this new actuator. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this work, the linear feedback limited control strategy is proposed to indicate how the Wolbachia‐infected mosquitoes should be introduced in the seasonal environment to reduce the non‐Wolbachia mosquito population. The numerical simulations show that the proposed strategy reduces the population level of non‐Wolbachia mosquitos, avoiding mosquito spread and, consequently, reducing the number of cases of vector‐borne diseases.  相似文献   

4.
This paper is concerned with adaptive global stabilization of an undamped non‐linear string in the case where any velocity feedback is not available. The linearized system may have an infinite number of poles and zeros on the imaginary axis. In the case where any velocity feedback is not available, a parallel compensator is effective. The adaptive stabilizer is constructed for the augmented system which consists of the controlled system and a parallel compensator. It is proved that the string can be stabilized by adaptive boundary control. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with global stabilization of an undamped non‐linear string in the case where any velocity feedback is not available. The linearized system has an infinite number of poles and zeros on the imaginary axis. In the case where any velocity feedback is not available, a parallel compensator is effective. The stabilizer is constructed for the augmented system which consists of the controlled system and a parallel compensator. It is proved that the string can be stabilized by linear boundary control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we consider stabilization of a 1‐dimensional wave equation with variable coefficient where non‐collocated boundary observation suffers from an arbitrary time delay. Since input and output are non‐collocated with each other, it is more complex to design the observer system. After showing well‐posedness of the open‐loop system, the observer and predictor systems are constructed to give the estimated state feedback controller. Different from the partial differential equation with constant coefficients, the variable coefficient causes mathematical difficulties of the stabilization problem. By the approach of Riesz basis property, it is shown that the closed‐loop system is stable exponentially. Numerical simulations demonstrate the effect of the stable controller. This paper is devoted to the wave equation with variable coefficients generalized of that with constant coefficients for delayed observation and non‐collocated control.  相似文献   

7.
This paper deals with the dynamics of non‐linear distributed parameter fixed‐bed bioreactors. The model consists of a pair of non‐linear partial differential (evolution) equations. The true spatially three‐dimensional situation is considered instead of the usual one‐dimensional approximation. This enables one to take into account the effects of flow profiles and the true location of the measurement transducer. The (output) evolution of the corresponding open‐loop control system is simulated. Furthermore, the associated closed‐loop system with respect to the relevant output function is considered. Especially, the asymptotic output tracking is found to be successful by applying the usual process based on the state feedback linearization. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
9.
This paper deals with finite‐time stabilization results of delayed Cohen‐Grossberg BAM neural networks under suitable control schemes. We propose a state‐feedback controller together with an adaptive‐feedback controller to stabilize the system of delayed Cohen‐Grossberg BAM neural networks. Stabilization conditions are derived by using Lyapunov function and some algebraic conditions. We also estimate the upper bound of settling time functional for the stabilization, which depends on the controller schemes and system parameters. Two illustrative examples and numerical simulations are given to validate the success of the derived theoretical results.  相似文献   

10.
In this paper low‐gain adaptive stabilization of undamped semilinear second‐order hyperbolic systems is considered in the case where the input and output operators are collocated. The linearized systems have an infinite number of poles and zeros on the imaginary axis. The adaptive stabilizer is constructed by a low‐gain adaptive velocity feedback. The closed‐loop system is governed by a non‐linear evolution equation. First, the well‐posedness of the closed‐loop system is shown. Next, an energy‐like function and a multiplier function are introduced and the exponential stability of the closed‐loop system is analysed. Some examples are given to illustrate the theory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
We prove existence, uniqueness, regularity and smooth dependence of the weak solution on the initial data for a semilinear, first order, dissipative hyperbolic system with discontinuous coefficients. Such hyperbolic systems have successfully been used to model the dynamics of distributed feedback multisection semiconductor lasers. We show that in a function space of continuous functions the weak solutions generate a smooth skew product semiflow. Using slow fast structure and dissipativity we prove the existence of smooth exponentially attracting invariant centre manifolds for the non‐autonomous model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We analyse the evolution of a system of finite faults by considering the non‐linear eigenvalue problems associated to static and dynamic solutions on unbounded domains. We restrict our investigation to the first eigenvalue (Rayleigh quotient). We point out its physical significance through a stability analysis and we give an efficient numerical algorithm able to compute it together with the corresponding eigenfunction. We consider the anti‐plane shearing on a system of finite faults under a slip‐dependent friction in a linear elastic domain, not necessarily bounded. The static problem is formulated in terms of local minima of the energy functional. We introduce the non‐linear (static) eigenvalue problem and we prove the existence of a first eigenvalue/eigenfunction characterizing the isolated local minima. For the dynamic problem, we discuss the existence of solutions with an exponential growth, to deduce a (dynamic) non‐linear eigenvalue problem. We prove the existence of a first dynamic eigenvalue and we analyse its behaviour with respect to the friction parameter. We deduce a mixed finite element discretization of the non‐linear spectral problem and we give a numerical algorithm to approach the first eigenvalue/eigenfunction. Finally we give some numerical results which include convergence tests, on a single fault and a two‐faults system, and a comparison between the non‐linear spectral results and the time evolution results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
We consider a class of non‐selfadjoint operators generated by the equation and the boundary conditions, which govern small vibrations of an ideal filament with non‐conservative boundary conditions at one end and a heavy load at the other end. The filament has a non‐constant density and is subject to a viscous damping with a non‐constant damping coefficient. The boundary conditions contain two arbitrary complex parameters. We derive the spectral asymptotics for the aforementioned two‐parameter family of non‐selfadjoint operators. In the forthcoming papers, based on the asymptotical results of the present paper, we will prove the Riesz basis property of the eigenfunctions. The spectral results obtained in the aforementioned papers will allow us to solve boundary and/or distributed controllability problems for the filament using the spectral decomposition method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the analysis of equilibrium problems for two‐dimensional elastic bodies with thin rigid inclusions and cracks. Inequality‐type boundary conditions are imposed at the crack faces providing a mutual non‐penetration between the crack faces. A rigid inclusion may have a delamination, thus forming a crack with non‐penetration between the opposite faces. We analyze variational and differential problem formulations. Different geometrical situations are considered, in particular, a crack may be parallel to the inclusion as well as the crack may cross the inclusion, and also a deviation of the crack from the rigid inclusion is considered. We obtain a formula for the derivative of the energy functional with respect to the crack length for considering this derivative as a cost functional. An optimal control problem is analyzed to control the crack growth. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We study the optimal input-output stabilization of discrete time-invariant linear systems in Hilbert spaces by state feedback. We show that a necessary and sufficient condition for this problem to be solvable is that the transfer function has a right factorization over H-infinity. A necessary and sufficient condition in terms of an (arbitrary) realization is that each state which can be reached in a finite time from the zero initial state has a finite cost. Another equivalent condition is that the control Riccati equation has a solution (in general unbounded and even non densely defined). The optimal state feedback input-output stabilization problem can then be solved explicitly in terms of the smallest solution of this control Riccati equation. We further show that after renorming the state space in terms of the solution of the control Riccati equation, the closed-loop system is not only input-output stable, but also strongly internally stable. Received: July 4, 2007. Revised: October 17, 2007.  相似文献   

16.
We consider analytic self‐maps φ on $\mathbf {D}$ and prove that the composition operator Cφ acting on $H_{v}^0$ is hypercyclic if φ is an automorphism or a hyperbolic non‐automorphic symbol with no fixed point. We give examples of weights v and parabolic non‐automorphisms φ on $\mathbf {D}$ which yield non‐hypercyclic composition operators Cφ on $H_{v}^0$.  相似文献   

17.
We consider the differential geometry of evolutes of singular curves and give the definitions of spacelike fronts and timelike fronts in the Minkowski plane. We also give the notions of moving frames along the non‐lightlike fronts in the Minkowski plane. By using the moving frames, we define the evolutes of non‐lightlike fronts and investigate the geometric properties of these evolutes. We obtain that the evolute of a spacelike front is a timelike front and the evolute of a timelike front is a spacelike front. Since the evolute of a non‐lightlike front is also a non‐lightlike front, we can take evolute again. We study the Minkowski Zigzag number of non‐lightlike fronts and give the n‐th evolute of the non‐lightlike front. Finally, we give an example to illustrate our results.  相似文献   

18.
We generalize the well‐known residual‐based error estimator in linear elasticity to the case of non‐linear deformation problems based on large strain and demonstrate its use in adaptive mesh control. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Quasiminimal structures play an important role in non‐elementary categoricity. In this paper we explore possibilities of constructing quasiminimal models of a given first‐order theory. We present several constructions with increasing control of the properties of the outcome using increasingly stronger assumptions on the theory. We also establish an upper bound on the Hanf number of the existence of arbitrarily large quasiminimal models.  相似文献   

20.
We consider an anisotropic phase‐field model for the isothermal solidification of a binary alloy due to Warren–Boettinger ( Acta. Metall. Mater. 1995; 43 (2):689). Existence of weak solutions is established under a certain convexity condition on the strongly non‐linear second‐order anisotropic operator and Lipschitz and boundedness assumptions for the non‐linearities. A maximum principle holds that guarantees the existence of a solution under physical assumptions on the non‐linearities. The qualitative properties of the solutions are illustrated by a numerical example. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号