首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A systematic study of the effect of the synthesis method and catalyst structure on the atom transfer radical polymerization (ATRP) performance of copper(I) bromide/pyridylmethanimine complexes supported on silica is described. Four different synthetic routes, including multistep‐grafting (M1), two‐step‐grafting (M2), one‐pot (M3), and preassembled‐complex (M4) methods, have been evaluated on three different silica supports (mesoporous SBA15 with 48‐ and 100‐Å pores and nonporous Cab‐O‐Sil EH5). The resulting solids have been used for ATRP of methyl methacrylate. The catalysts allow for moderate to poor control of the polymerization, with polydispersity indices (PDIs) ranging from 1.46 to greater than 2. The materials made with the preassembled‐complex (M4) and one‐pot (M3) approaches are generally more effective than those prepared with a grafting method (M1 and M2) on porous silica, whereas all the methods provide similarly performing catalysts on the nonporous support. Nonporous Cab‐O‐Sil EH5 is the most effective support because of its small particle size, lack of porosity, and relative compatibility in the reaction media. All the catalysts leach copper into solutions in small amounts. In addition, the catalysts can be effectively recycled, with improved controlled character in recycle runs (PDI ~ 1.2). Control experiments have shown that this improved performance of the used catalysts is likely due to the presence of a soluble Cu(II) complex in the materials that effectively deactivates the growing polymer chain, leading to narrow PDIs and controlled molecular weights. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1384–1399, 2004  相似文献   

2.
Although atom transfer radical polymerization (ATRP) is often a controlled/living process, the growth rate of polymer films during surface‐initiated ATRP frequently decreases with time. This article investigates the mechanism behind the termination of film growth. Studies of methyl methacrylate and methyl acrylate polymerization with a Cu/tris[2‐(dimethylamino)ethyl]amine catalyst system show a constant but slow growth rate at low catalyst concentrations and rapid growth followed by early termination at higher catalyst concentrations. For a given polymerization time, there is, therefore, an optimum intermediate catalyst concentration for achieving maximum film thickness. Simulations of polymerization that consider activation, deactivation, and termination show trends similar to those of the experimental data, and the addition of Cu(II) to polymerization solutions results in a more constant rate of film growth by decreasing the concentration of radicals on the surface. Taken together, these studies suggest that at high concentrations of radicals, termination of polymerization by radical recombination limits film growth. Interestingly, stirring of polymerization solutions decreases film thickness in some cases, presumably because chain motion facilitates radical recombination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 386–394, 2003  相似文献   

3.
Well‐defined sulfonated polystyrene and block copolymers with n‐butyl acrylate (nBA) were synthesized by CuBr catalyzed living radical polymerization. Neopentyl p‐styrene sulfonate (NSS) was polymerized with ethyl‐2‐bromopropionate initiator and CuBr catalyst with N,N,N′,N′‐pentamethylethyleneamine to give poly(NSS) (PNSS) with a narrow molecular weight distribution (MWD < 1.12). PNSS was then acidified by thermolysis resulting in a polystyrene backbone with 100% sulfonic acid groups. Random copolymers of NSS and styrene with various composition ratios were also synthesized by copolymerization of NSS and styrene with different feed ratios (MWD < 1.11). Well defined block copolymers with nBA were synthesized by sequential polymerization of NSS from a poly(n‐butyl acrylate) (PnBA) precursor using CuBr catalyzed living radical polymerization (MWD < 1.29). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5991–5998, 2008  相似文献   

4.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

5.
New supported catalytic systems based on the immobilization of a ligand onto supported (co)polymers were prepared, allowing copper immobilization onto a solid support during the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). These supported catalysts were elaborated by the ATRP of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone and/or styrene onto a Wang resin initiator. Two different approaches were used, involving well‐defined architectures synthesized by ATRP. First, a supported electrophilic homopolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone)] was synthesized to obtain an azlactone ring at each repetitive unit, and a supported statistical copolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone‐stat‐styrene)] was synthesized to introduce a distance between the azlactone rings. The azlactone‐based (co)polymers were then modified by a reaction with N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) to create supported complexing sites for copper bromide. The ATRP of MMA was studied with these supported ligands, and a first‐order kinetic plot was obtained, but high polydispersity indices of the obtained poly(methyl methacrylate) were observed (polydispersity index > 2). On the other hand, the supported ATRP of styrene was performed, followed by the nucleophilic substitution of bromine by TEDETA (Wang‐g‐polystyrene–N,N,N′,N′‐tetraethyldiethylenetriamine) at the chain end of the grafted polystyrene chains. This strategy led the ligand away from the core bead, depending on the length of the polystyrene block (number‐average molecular weight determined by size exclusion chromatography = 1100–2250 g/mol). These supported complexes mediated a controlled polymerization of MMA, yielding polymers with controlled molar masses and low polydispersity indices. Moreover, after the polymerization, 96% of the initial copper was kept in the beads. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5316–5328, 2006  相似文献   

6.
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004  相似文献   

7.
Covalently bonded layered silicated/polystyrene nanocomposites were synthesized via atom transfer radical polymerization in the presence of initiator‐modified layered silicate. The resulting nanocomposites had an intercalated and partially exfoliated structure, as confirmed by X‐ray diffraction and transmission electron microscopy. The thermal properties of the nanocomposites improved substantially over those of neat polystyrene. In particular, a maximum increase of 35.5 °C in the degradation temperature was displayed by these nanocomposites. Additionally, the surface elastic modulus and hardness of these nanocomposites were more than double those of pure polystyrene. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 534–542, 2005  相似文献   

8.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

9.
Kinetic studies of the atom transfer radical polymerization (ATRP) of styrene are reported, with the particular aim of determining radical‐radical termination rate coefficients (<kt>). The reactions are analyzed using the persistent radical effect (PRE) model. Using this model, average radical‐radical termination rate coefficients are evaluated. Under appropriate ATRP catalyst concentrations, <kt> values of approximately 2 × 108 L mol?1 s?1 at 110 °C in 50 vol % anisole were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5548–5558, 2004  相似文献   

10.
Three kinds of photoresponsive polymethacrylates containing different bisazo chromophores were prepared with atom transfer radical polymerization and characterized with proton nuclear magnetic resonance, gel permeation chromatography, and ultraviolet–visible spectra. These polymers had similar molecular weights, molecular weight distributions, glass‐transition temperatures, and absorption coefficients. The irradiation of these polymer films with a linearly polarized laser could induce birefringence because of the reorientation of the bisazo chromophores through trans–cis–trans isomerization cycles of double azo bonds, and the corresponding mechanism was also examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4237–4247, 2004  相似文献   

11.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

12.
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2‐bromo‐2‐methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n‐butyl acrylate with Cu(I)X/N,N‐bis(2‐pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N,N,N″‐pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10‐hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator‐modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004  相似文献   

13.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

14.
A detailed investigation of the polymerization of allyl methacrylate, a typical unsymmetrical divinyl compound containing two types of vinyl groups, methacryloyl and allyl, with quite different reactivities, was performed with atom transfer radical polymerization (ATRP). Homopolymerizations were carried out in bulk, with ethyl‐2‐bromoisobutyrate as the initiator and with copper halide (CuX, where X is Cl or Br) with N,N,N,N,N″‐pentamethyldiethylenetriamine as the catalyst system. Kinetic studies demonstrated that during the early stages of the polymerization, the ATRP process proceeded in a living manner with a low and constant radical concentration. However, as the reaction continued, the increased diffusion resistance restricted the mobility of the catalyst system and interrupted the equilibrium between the growing radicals and dormant species. The obtained poly(allyl methacrylate)s (PAMAs) were characterized with Fourier transform infrared, 1H NMR, and size exclusion chromatography techniques. The dependence of both the gel point conversion and molecular characteristics of the PAMA prepolymers on different experimental parameters, such as the initiator concentration, polymerization temperature, and type of halide used as the catalyst, was analyzed. These real gel points were compared with the ones calculated according to Gordon's equation under the tentative assumption of equal reactivity for the two types of vinyl groups. Moreover, the microstructure of the prepolymers was the same as that exhibited by those homopolymers prepared by conventional free‐radical polymerization; the fraction of syndiotactic arrangements increased as the reaction temperature was lowered. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2395–2406, 2005  相似文献   

15.
Efficient antibacterial surfactants have been prepared by the quaternization of the amino groups of poly(ethylene‐co‐butylene)‐b‐poly[2‐(dimethylamino)ethylmethacrylate] (PEB‐b‐PDMAEMA) diblock copolymers by octyl bromide. The diblock copolymers have been synthesized by ATRP of 2‐(dimethylamino)ethylmethacrylate (DMAEMA) initiated by an activated bromide‐end‐capped poly(ethylene‐co‐butylene). In the presence of CuBr, 1,4,7,10,10‐hexamethyl‐triethylenetetramine (HMTETA), and toluene at 50 °C, the initiation is slow in comparison with propagation. This situation has been improved by the substitution of CuCl for CuBr, all the other conditions being the same. Finally, the addition of an excess of CuCl2 (deactivator) to the CuCl/HMTETA catalyst is very beneficial in making the agreement between the theoretical and experimental number‐average molecular weights excellent. The antibacterial activity of PEB‐b‐PDMAEMA quaternized by octyl bromide has been assessed against bacteria and is comparable to the activity of a commonly used disinfectant, that is, benzalkonium chloride. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1214‐1224, 2006  相似文献   

16.
Living radical polymerizations of styrene were performed under emulsion atom transfer radical polymerization conditions with latexes prepared by a nanoprecipitation technique recently developed for the stable free‐radical polymerization process. Latexes were prepared by the precipitation of a solution of low‐molecular‐weight polystyrene in acetone into a solution of a surfactant in water. The resulting particles were swollen with styrene and then heated. The effects of various surfactants and hydrophobic ligands, the reaction temperature, and the ligand/copper(I) bromide ratio were studied. The best results were obtained with the nonionic surfactant Brij 98 in combination with the hydrophobic ligand N,N‐bis(2‐pyridylmethyl)octadecylamine and a ligand/copper(I) bromide ratio of 1.5 at a reaction temperature of 85–90 °C. Under these conditions, latexes with good colloidal stability with average particle diameters of 200 nm were obtained. The molecular weight distributions of the polystyrenes were narrow, although the experimental molecular weights were slightly larger than the theoretical ones because not all the macroinitiator appeared to reinitiate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4027–4038, 2006  相似文献   

17.
Atom transfer radical polymerization has been used to prepare well-defined vinyl macromonomers of polystyrene using vinyl chloroacetate as an initiator. Because styrene and vinyl chloroacetate do not copolymerize, no branching or incorporation of the initiator into the backbone was observed. Macromonomers of several molecular weights were prepared and copolymerized free radically with N-vinylpyrrolidinone in varying feed ratios in order to produce poly(NVP-g-Sty) graft copolymers. The macromonomers used were of sufficiently high molecular weight to form physical crosslinks in solvents which favor the hydrophilic NVP, such as water, which prevent the copolymer from dissolving and cause it to swell. These materials, therefore, formed hydrogels of swellabilities in water exceeding 95%, depending on the amount of styrene that was incorporated into the copolymer. Limitations of and alternatives to this method are also discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 823–830, 1998  相似文献   

18.
Living‐radical polymerization of acrylates were performed under emulsion atom transfer radical polymerization (ATRP) conditions using latexes prepared by a nanoprecipitation technique previously employed and optimized for the polymerization of styrene. A macroinitiator of poly(n‐butyl acrylate) prepared under bulk ATRP was dissolved in acetone and precipitated in an aqueous solution of Brij 98 to preform latex particles, which were then swollen with monomer and heated. Various monomers (i.e. n‐butyl acrylate, styrene, and tert‐butyl acrylate) were used to swell the particles to prepare homo‐ and block copolymers from the poly(n‐butyl acrylate) macroinitiator. Under these conditions latexes with a relatively good colloidal stability were obtained. Furthermore, amphiphilic block copolymers were prepared by hydrolysis of the tert‐butyl groups and the resulting block copolymers were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The bulk morphologies of the polystyrene‐b‐poly(n‐butyl acrylate) and poly(n‐butyl acrylate)‐b‐poly(acrylic acid) copolymers were investigated by atomic force microscopy (AFM) and small angle X‐ray scattering (SAXS). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 625–635, 2008  相似文献   

19.
20.
The evolution of the bromine end functionality during the bulk atom transfer radical polymerization (ATRP) of styrene [in the presence of the catalyst CuBr/4,4′‐di‐(5‐nonyl)‐2,2′‐bipyridine] was monitored with 600‐MHz 1H NMR. A decrease in the functionality versus the conversion was observed. The loss of functionality was especially significant at very high conversions (>90%). The experimental data were compared with a kinetic model of styrene ATRP. The latter indicated that the loss of chain‐end functionality was partly due to bimolecular terminations but was mainly due to β‐H elimination reactions induced by the copper(II) deactivator. These elimination reactions, which occurred later in the reaction, did not significantly affect the polymer molecular weights and the polydispersity. Therefore, a linear evolution of the molecular weights and low‐polydispersity polymers were still observed, despite a loss of functionality. Understanding these side reactions helped in the selection of the proper conditions for reducing the contribution of the elimination process and for preparing well‐defined polystyrene (number‐average molecular weight ~10,000 g mol?1; weight‐average molecular weight/number‐average molecular weight ~1.1) with a high functionality (92%). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 897–910, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号