首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents numerical solutions for the space‐ and time‐fractional Korteweg–de Vries equation (KdV for short) using the variational iteration method. The space‐ and time‐fractional derivatives are described in the Caputo sense. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via variational theory. The iteration method, which produces the solutions in terms of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and accurate when applied to space‐ and time‐fractional KdV equations. The method introduces a promising tool for solving many space–time fractional partial differential equations. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

2.
A new method based on Lie-Backlund symmetry method to solve the perturbed nonlinear evolution equations is presented. New approximate solutions of perturbed nonlinear evolution equations stemming from the exact solutions of unperturbed equations are obtained. This method is a generalization of Burde's Lie point symmetry technique.  相似文献   

3.
一般变系数KdV方程的精确解   总被引:7,自引:0,他引:7  
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable-coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don‘t exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable-coefficient KdV equation is given.  相似文献   

4.
In this work, we develop a new integrable equation by combining the KdV equation and the negative‐order KdV equation. We use concurrently the KdV recursion operator and the inverse KdV recursion operator to construct this new integrable equation. We show that this equation nicely passes the Painlevé test. As a result, multiple soliton solutions and other soliton and periodic solutions are guaranteed and formally derived.  相似文献   

5.
The paper investigates the mKdV equation with the potential under symmetry constraint through bilinear approach, i.e., Hirota method and Wronskian technique. We show that the potential can be a summation of squares of wave functions and these wave functions can precisely be described as Wronskians.  相似文献   

6.
推广的F -展开法及变系数KdV和mKdV的精确解   总被引:2,自引:0,他引:2       下载免费PDF全文
该文首先推广了新近提出的F -展开法,利用该方法导出了变系数KdV和mKdV方程 的类椭圆函数解;并在极限的情况下,得到变系数KdV和 mKdV方程变波速和变波长的类孤子解以及其他形式解.  相似文献   

7.
The current article devoted on the new method for finding the exact solutions of some time‐fractional Korteweg–de Vries (KdV) type equations appearing in shallow water waves. We employ the new method here for time‐fractional equations viz. time‐fractional KdV‐Burgers and KdV‐mKdV equations for finding the exact solutions. We use here the fractional complex transform accompanied by properties of local fractional calculus for reduction of fractional partial differential equations to ordinary differential equations. The obtained results are demonstrated by graphs for the new solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the nonlocal symmetries and exact interaction solutions of the variable coefficient Korteweg–de Vries (KdV) equation are studied. With the help of pseudo-potential, we construct the high order nonlocal symmetries of the time-dependent coefficient KdV equation for the first time. In order to construct the new exact interaction solutions, two auxiliary variables are introduced, which can transform nonlocal symmetries into Lie point symmetries. Furthermore, using the Lie point symmetries of the closed system, some exact interaction solutions are obtained. For some interesting solutions, such as the soliton–cnoidal wave solutions are discussed in detail, and the corresponding 2D and 3D figures are given to illustrate their dynamic behavior.  相似文献   

9.
In this paper, we establish an estimate for the solutions of small-divisor equation of higher order with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple normal frequencies and unbounded perturbations, we prove that there are many periodic solutions for the coupled KdV equation subject to small Hamiltonian perturbations.  相似文献   

10.
广义组合KdV-mKdV方程的显式精确解   总被引:1,自引:0,他引:1  
Abstract. With the aid of Mathematica and Wu-elimination method,via using a new generalizedansatz and well-known Riccati equation,thirty-two families of explicit and exact solutions forthe generalized combined KdV and mKdV equation are obtained,which contain new solitarywave solutions and periodic wave solutions. This approach can also be applied to other nonlinearevolution equations.  相似文献   

11.
The method for constructing first integrals and general solutions of nonlinear ordinary differential equations is presented. The method is based on index accounting of the Fuchs indices, which appeared during the Painlevé test of a nonlinear differential equation. The Fuchs indices indicate us the leading members of the first integrals for the origin differential equation. Taking into account the values of the Fuchs indices, we can construct the auxiliary equation, which allows to look for the first integrals of nonlinear differential equations. The method is used to obtain the first integrals and general solutions of the KdV‐Burgers and the mKdV‐Burgers equations with a source. The nonautonomous first integrals in the polynomials form are found. The general solutions of these nonlinear differential equations under at some additional conditions on the parameters of differential equations are also obtained. Illustrations of some solutions of the KdV‐Burgers and the mKdV‐Burgers are given.  相似文献   

12.
13.
In this article, the generalized Rosenau–KdV equation is split into two subequations such that one is linear and the other is nonlinear. The resulting subequations with the prescribed initial and boundary conditions are numerically solved by the first order Lie–Trotter and the second‐order Strang time‐splitting techniques combined with the quintic B‐spline collocation by the help of the fourth order Runge–Kutta (RK‐4) method. To show the accuracy and reliability of the proposed techniques, two test problems having exact solutions are considered. The computed error norms L2 and L with the conservative properties of the discrete mass Q(t) and energy E(t) are compared with those available in the literature. The convergence orders of both techniques have also been calculated. Moreover, the stability analyses of the numerical schemes are investigated.  相似文献   

14.
We show that the group classification results of the article entitled “Group analysis of KdV equation with time dependent coefficients” which appeared in [A.G. Johnpillai, M.C. Khalique, Group analysis of KdV equation with time dependent coefficients, Appl. Math. Comput. 216 (2010) 3761-3771] can be obtained from those of a more general class by a change of variables.  相似文献   

15.
In this letter, a new auxiliary function method is presented for constructing exact travelling wave solutions of nonlinear partial differential equations. The main idea of this method is to take full advantage of the solutions of the elliptic equation to construct exact travelling wave solutions of nonlinear partial differential equations. More new exact travelling wave solutions are obtained for the generalized coupled Hirota–Satsuma KdV system.  相似文献   

16.
17.
In this paper, we demonstrate that 14 solutions from 34 of the combined KdV and Schwarzian KdV equation obtained by Li [Z.T. Li, Appl. Math. Comput. 215 (2009) 2886-2890] are wrong and do not satisfy the equation. The other a number of exact solutions are equivalent each other.  相似文献   

18.
19.
We derive a new ( 2 + 1)‐dimensional Korteweg–de Vries 4 (KdV4) equation by using the recursion operator of the KdV equation. This study shows that the new KdV4 equation possess multiple soliton solutions the same as the multiple soliton solutions of the KdV hierarchy, but differ only in the dispersion relations. We also derive other traveling wave solutions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, the Lie symmetry analysis is performed on the fifth-order KdV types of equations which arise in modeling many physical phenomena. The similarity reductions and exact solutions are obtained based on the optimal system method. Then the exact analytic solutions are considered by using the power series method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号