首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. The copolyimides as the matrix material were prepared via polycondensation reactions of pyromellitic dianhydride with three new diamines (4BAP, 3BAP, and BAN) through the poly(amic acid) precursors. Functionalized poly(propylene glycol) (PPGBr‐1000 and PPGBr‐2500) as the labile oligomer was prepared via reaction of poly(propylene glycol) monobutyl ether with 2‐bromoacetyl bromide. Graft copolymers were prepared by the reaction of the poly(amic acid)s with these thermally labile constituents. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H‐NMR, DSC, TGA, SEM, TEM, and dielectric constant. The average pore size of the polyimide nanofoams was in the range of 5–20 nm. The structure–property relationships of the prepared nanofoams were investigated based on the diamine structures and also molecular weights of labile groups. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Tensile properties of the polyimide and copolyimide films based on two dianhydrides, pyromellitic dianhydride (PMDA) and 3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA) and two diamines, 4,4-oxydianiline (ODA), and a proprietary aromatic diamine (PD) have been described. The tensile strength of the films containing higher proportions of BTDA or PMDA and PD is much higher (except the fully rigid film based on PMDA-PD which is brittle in nature) than the films containing higher proportion of ODA moiety. The films containing PD as the diamine moiety exhibit high initial moduli than the films containing exclusively or mainly ODA as the diamine moiety. The films having higher concentration of the -O- linkage originated from diamine ODA are found to exhibit higher elongation values. There is found to be no direct correlation between ηinh of the precursor casting solutions and mechanical properties of structurally different polyimide/copolyimide films. For a particular polyimide or copolyimide film, the tensile strength value is found to be less sensitive than the elongation to the variation of ηinh value of the precursor poly(amic acid) or copoly(amic acid). Tensile strength and elongation of the film, basically rigid in nature, may be improved by post-curing at 360°C/370°C. While Kapton H film retains 78% and 63.5% of its tensile strength and % elongation at break (% Eb) respectively after hot-wet mechanical test, the film based on BTDA 80, PMDA 20 and PD shows an increase of about 27% and 22% in its tensile strength and % Eb respectively.  相似文献   

3.
New routes for the synthesis of high Tg thermally stable polymer foams with pore sizes in the nanometer regime have been developed. Foams were prepared by casting well-defined microphase-separated block copolymers comprised of a thermally stable block and a thermally labile material. At properly designed volume fractions the morphology provides a matrix of the thermally stable material with the thermally labile material as the dispersed phase. Upon thermal treatment, the thermally unstable block undergoes thermolysis generating pores, the size and shape of which are dictated by the initial copolymer morphology. Triblock copolymers comprised of a high Tg, amorphous polyimide matrix with poly(propylene oxide) as the thermally decomposable coblock, were prepared. The copolymer synthesis was conducted through the poly(amic acid) precursor and subsequent cyclodehydration to the polyimide by either thermal or chemical means. Dynamic mechanical analysis confirmed microphase separated morphologies for all copolymers, irrespective of the propylene oxide block lengths investigated. Upon decomposition of the thermally labile coblock, a 9–18% reduction in density was observed, consistent with the generation of a foam which was stable to 400°C. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
A novel preparation approach for high‐performance polyimide gels that are swollen or have a jungle‐gym‐type structure is proposed. A new rigid and symmetric trifunctional amine, 1,3,5‐tris(4‐aminophenyl)benzene (TAPB), was synthesized as a crosslinker. Three different kinds of amic acid oligomers derived from pyromellitic dianhydride (PMDA), 4,4′‐oxydiphthalic anhydride (ODPA), p‐phenylenediamine (PDA), and 4,4′‐oxydianiline (ODA) were end‐crosslinked with TAPB at a high temperature to make polyimide networks with different structures. Transparent polyimide gels were obtained from the ODPA–ODA/TAPB series with high compression moduli of about 1 MPa at their equilibrium swollen states in N‐methylpyrrolidone. Microscopic phase separation occurred during the gelation–imidization process when polyimide networks were generated from PMDA–PDA/TAPB and PMDA–ODA/TAPB. After these opaque polyimide networks were dried, a jungle‐gym‐like structure was obtained for the PMDA–PDA/TAPB and PMDA–ODA/TAPB series; that is, there was a high void content inside the networks (up to 70%) and little volume shrinkage. These polyimide networks did not expand but absorbed the solvent and showed moduli as high as those of solids. Therefore, using the highly rigid crosslinker TAPB combined with the flexible monomers ODPA and ODA and the rigid monomers PMDA and PDA, we prepared swollen, high‐performance polyimide gels and jungle‐gym‐type polyimide networks, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2501–2512, 2002  相似文献   

5.
The effect of high boiling point solvent on the residual stress behaviors of semiflexible structure poly(4,4′‐oxydiphenylene pyromellitimide) (PMDA‐ODA) and pseudo‐rodlike poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA) polyimide was investigated. As a solvent, a mixed solution of 20 wt % cyclohexyl‐2‐pyrrolidone (CHP; bp = 307 °C) and 80 wt % n‐methyl‐2‐pyrrolidone (NMP; bp = 202 °C) was used. The effects of solvent system and imidizing history on the morphological structure, as well as residual stress, were significantly high in the BPDA‐PDA having high chain rigidity, but relatively low in the semiflexible PMDA‐ODA with low chain rigidity. In addition, rapidly cured films prepared from PAA (NMP/CHP) showed higher residual stress and a lower degree of molecular anisotropy than slowly cured film imidized from PAA (NMP). This was induced by high chain mobility in polyimide thin films prepared from PAA (NMP/CHP) during the thermal cure process. Therefore, molecular anisotropy, depending on the solvent system and imidizing history, might be one of the important factors leading to low residual stress in polyimide thin films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2879–2890, 2000  相似文献   

6.
Poly(amic acid) was synthesized with a low‐temperature solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The cast films were thermally treated at various temperatures. The polyimide containing the hydroxyl group was rearranged by decarboxylation, resulting in a fully aromatic polybenzoxazole at temperatures higher than 430 °C. These stepwise cyclizations were monitored with elemental analysis, Fourier transform infrared, and nuclear magnetic resonance. Microanalysis results confirmed the chemical compositions of poly(amic acid), polyimide, and polybenzoxazole, respectively. A cyclodehydration from poly(amic acid) to polyimide occurred between 150 and 250 °C in differential scanning calorimetry, and a cyclodecarboxylation to polybenzoxazole appeared at 400–500 °C. All the samples were stable up to 625 °C in nitrogen and displayed excellent thermal stability. Polybenzoxazole showed better thermal stability than polyimide, but polyimide exhibited better mechanical properties than polybenzoxazole. However, polyimide showed a crystalline pattern under a wide‐angle X‐ray, whereas polybenzoxazole was amorphous. The precursor poly(amic acid) was readily soluble in a variety of solvents, whereas the polyimide and polybenzoxazole were not soluble at all. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2537–2545, 2000  相似文献   

7.
《Chemical physics letters》1987,133(4):283-287
4.4-oxydianiline (ODA) and 1,2,3,5-benzenetetracarboxylic anhydride (PMDA) were deposited from the vapor phase onto a polycrystalline silver substrate and polymerization of the two components to form ultrathin polyimide films (d≈ 11 Å) was followed by X-ray photoelectron spectroscopy. Both PMDA and ODA chemisorb on the clean surface under partial fragmentation. Co-deposition of ODA and PMDA followed by heating of the substrate led to formation of thermally stable (T<450°C) polyimide films. Our data indicate that adhesion of the polyimide film to the surface involves chemical bonding to fragmented PMDA and/or ODA chemisorbed on the substrate. Our experiments show that polyimide films can be prepared sufficiently thin to allow the application of surface sensitive techniques to probe the substrate-polymer interface and to study the basic physics and chemistry of adhesion.  相似文献   

8.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

9.
Summary: A copolycondesation-type poly (amic acid) (PAA) was synthesized using pyromellitic dianhydride (PMDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) as dianhydride monomers, and 4,4′-oxydianiline (ODA) as a diamine monomer under microwave irradiation in dimethylformamide (DMF). PAA was then converted into a polyimide (PI) by an imidization. The structure and performance of the polymer were characterized by Fourier-transform infrared (FT-IR) spectroscopy, Proton nuclear magnetic resonance (1H NMR) spectrometry, viscosity, X-ray diffraction (XRD), and thermogravimetric (TG) analyses. The results showed that under microwave irradiation, the intrinsic viscosity and the yield of PAA were increases, and the reaction time was shortened. The FT-IR spectra of the polymer revealed characteristic peaks for PI around 1778 and 1723 cm–1. TG curves indicated that the obtained PI began to lose weight at 535 °C, and its 10% thermal decomposition temperature under N2 was 587 °C.  相似文献   

10.
A novel positive‐working and aqueous‐base‐developable photosensitive poly(imide benzoxazole) precursor based on a poly(amic acid hydroxyamide) bearing phenolic hydroxyl groups and carboxylic acid groups, a diazonaphthoquinone (DNQ) photosensitive compound, and a solvent was developed. Poly(amic acid hydroxyamide) was prepared through the polymerization of 2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluoropropane, trimellitic anhydride chloride, and 4,4′‐oxydibenzoyl chloride. Subsequently, the thermal cyclization of the poly(amic acid hydroxyamide) precursor at 350 °C produced the corresponding poly(imide benzoxazole). The inherent viscosity of the precursor polymer was 0.17 dL/g. The cyclized poly(imide benzoxazole) showed a high glass‐transition temperature of 372 °C and 5% weight loss temperatures of 535 °C in nitrogen and 509 °C in air. The structures of the precursor polymer and the fully cyclized polymer were characterized with Fourier transform infrared and 1H NMR. The photosensitive polyimide precursor containing 25 wt % DNQ photoactive compound showed a sensitivity of 256 mJ/cm2 and a contrast of 1.14 in a 3‐μm film with a 0.6 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 5 μm was obtained from this composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5990–5998, 2004  相似文献   

11.
Two different polyimide semipermeable membranes have been prepared from two base polyimides of PMDA/ODA and BTDA/ODA by incorporation of lithium chloride with the respective poly(amic acids) and subsequently leaching out the maximum possible lithium chloride by water at slightly elevated temperature. The water and various organic vapor permeability of the lithium chloride modified films has been found to be better compared to the respective control films. BTDA/ODA based polyimide films show overall lower permeability.  相似文献   

12.
Novel co‐polymerization polyimide (PI) fibers based on 4,4′‐oxydianiline (ODA)‐pyromellitic dianhydride (PMDA) were prepared. 2‐(4‐Aminophenyl)‐5‐aminobenzimidazole (PABZ) containing the N? H group was introduced into the structure of the fibers as the proton donor. The results of Fourier transform infrared (FTIR) and dynamic mechanical analysis (DMA) showed that hydrogen bonding occured between the N? H group and chains, which strongly enhanced interchain interaction. This hydrogen bonding interaction increased the tensile strength and initial modulus of the PI fibers up to 2.5 times and 26 times, respectively, compared to those of homo‐PI PMDA‐ODA fibers with no hydrogen‐bonding interaction because of the absence of proton donors after the imidization process. In the mean time, glass transition temperature (Tg) of the modified PI fibers was found to be 410–440°C, which was higher than that of the homo‐PI PMDA‐ODA fibers. From the result, a novel access to molecular design and manufacture of high performance PI fibers with good properties could be provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A polymer blend consisting of polyimide (PI) and polyurethane (PU) was prepared by means of a novel approach. PU prepolymer was prepared by the reaction of polyester polyol and 2,4-tolylenediisocyanate (2,4-TDI) and then end-capped with phenol. Poly(amide acid) was prepared from pyromellitic dianhydride (PMDA) and oxydianiline (ODA). A series of oligo(amide acid)s were also prepared by controlling the molar ratio of PMDA and ODA. The PU prepolymer and poly(amide acid) or oligo(amide acid) solution were blended at room temperature in various weight ratios. The cast films were obtained from the blend solution and treated at various temperatures. With the increase of polyurethane component, the films changed from plastic to brittle and then to elastic. The poly(urethane–imide) elastomers showed excellent mechanical properties and moderate thermal stability. The elongation of films with elasticity was more than 300%. The elongation set after the breaking of films was small. From the dynamic mechanical analysis, all the samples showed a glass transition temperature (Tg) at ca. −15°C, corresponding to Tg of the urethane component, suggesting that phase separation occurred between the two polymer components, irrespective of polyimide content. TGA and DSC studies indicated that the thermal degradation of poly(urethane–imide) was in the temperature range 250–270°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3745–3753, 1997  相似文献   

14.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

15.
For polyimide thin films, the dielectric properties were investigated with the capacitance and optical methods. The dielectric constants of the 4,4′‐oxydianiline (ODA)‐based polyimide thin films varied from 2.49 to 3.10 and were in the following decreasing order: 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)–ODA > 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA)–ODA > 4,4′‐hexafluoroisopropylidene diphthalic dianhydride (6FDA)–ODA. According to the absorption of water, the diffusion coefficients in the films varied from 4.8 × 10?10 to 7.2 × 10?10 cm2/s and were in the following increasing order: BPDA–ODA < PMDA–ODA < 6FDA–ODA. The dielectric constants and diffusion coefficients of the polyimides were affected by the morphological structures, including the molecular packing order. However, because of the water uptake, the changes in the dielectric constants in the polyimide thin films varied from 0.49 to 1.01 and were in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. Surprisingly, 6FDA–ODA with bulky hexafluoroisopropylidene groups showed less of a change in its dielectric constant than PMDA–ODA. The total water uptake for the polyimide thin films varied from 1.43 to 3.19 wt % and was in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. This means that the changes in the dielectric constants in the polyimide thin films were significantly related to the morphological structure and hydrophobicity of hexafluoroisopropylidene groups. Therefore, the morphological structure and chemical affinity in the polyimide thin films were important factors in controlling the dielectric properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2190–2198, 2002  相似文献   

16.
Time-resolved light scattering was employed to investigate kinetics of phase separation in mixtures of poly (ethylene glycol monomethylether) (PEGE)/poly (propylene glycol) (PPG) oligomers. Phase diagrams for PEGE/PPG of varying molecular weights were established by means of cold point measurements. The oligomer mixtures reveal an upper critical solution temperature (UCST). Several temperature quench experiments were carried out with a 60/40 PEGE/PPG blend by rapidly quenching from a single phase (69°C) to two-phase temperatures (66–61°C) at 1°C intervals. As is typical for oligomer mixtures, the early stage of spinodal decomposition (SD) was not detected. The kinetics of phase decomposition was found to be dominated by the late stage of SD. Time-evolution of scattering intensity was analyzed in accordance with nonlinear and dynamical scaling theories. The time dependence of the peak intensity Im and the corresponding peak wavenumber qm was found to follow the power-law {Im(t)? tα, qm(t)? t} with the values of α = 3 ± 0.3 and β = 1 ± 0.2, which are very close to the values predicted by Siggia. This process has been attributed to a coarsening mechanism driven by surface tension. In the temporal scaling analysis, the structure function reveals university with time, suggesting self-similarity. Phase separation dynamics in 60/40 PEGE/PPG resembles the behavior predicted for off-critical mixtures.  相似文献   

17.
Conventional synthesis of polyimides includes high‐temperature (160–350 °C) imidization of poly(amic acid)s. In the present work, imidization has been carried out at much lower temperatures (40–160 °C). 1,2,4,5,‐cyclohexanetetracarboxylic dianhydride (HPMDA) or pyromellitic dianhydride (PMDA) was polymerized with an aromatic diamine, 4,4′‐diaminodiphenylmethane (DDPM), to give poly(amic acid)s, which were then imidized chemically. Imidization was more than 90% complete even at the very low imidization temperature of 40 °C. It was found that the imidization occurs in two steps: an initial rapid cyclization and a subsequent slower cyclization. The activation energy for the rapid process was determined to be 4.3 kJ/mol, and that of the slower process, 4.8 kJ/mol. As the imidization temperature decreases, the transmittance of the resulting polyimides tends to gradually increase, the cutoff wavelength decreases and the color becomes pale. A partially aliphatic polyimide based on HPMDA and DDPM prepared at 40 °C yielded thin films that were highly transparent and colorless, and had good flexibility, solubility and thermal stability. The polyimide films prepared in this study may be good candidates for flexible, transparent plastic substrates in the display industry. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1593–1602  相似文献   

18.
A silane‐modified mono‐lacunary Keggin‐type polyoxometalate (POM), (Bu4N)4[SiW11O39{(CH2?CH? Si)2O}] (SiW11? CH?CH2), was obtained by reaction of vinyltrimethoxysilane with K8(SiW11O39) in acidic MeCN/H2O mixed solutions. Then, the modified polyoxometalate was physically blended with the pyromellitic dianhydride (PMDA)‐4,4′‐oxydianiline (ODA) poly(amic acid) and the blends were thermally imidized to form polyimide/ polyoxometalate composites. The X‐ray diffraction (XRD) analysis indicates that the polyoxometalate clusters cannot form crystalline structures in the composite, suggesting that the blending leads to improved compatibility between the polymer matrix and the modified polyoxometalate. The EDS (W‐mapping) studies on the composite films reveal that the polyoxometalate clusters are well dispersed in the polyimide matrix. The physical incorporation of modified POM into polyimide remarkably reduced the dielectric constant of the latter from 3.29 to 2.05 when 20 wt% of SiW11? CH?CH2 was used. Besides, the addition of the modified POM into polyimide increased the storage modulus of polyimide without severely affecting its thermal properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
4,4′-Diaminodiphenylacetylene (p-intA) was reacted with 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and pyromellitic dianhydride (PMDA) in N-methyl-2-pyrrolidone (NMP) to give poly(amic acid) solution of moderate to high viscosity. Thermal imidization gave polyimide having acetylene units that are linked para to the aromatic connecting unit. Polyimide having acetylene units that are linked meta to the aromatic connecting unit also was prepared utilizing 3,3′-diaminodiphenylacetylene (m-intA) for comparison. The crosslinking behavior of the acetylene units was observed with DSC. Exotherm due to the crosslinking of the para-linked acetylene units appeared at ca. 340 to 380°C depending on the structure of polyimide, whereas meta-linked acetylene units appeared at lower temperature as 340–350°C. After thermal treatment at high temperature such as 350 or 400°C, the amount of the exotherm became smaller and finally disappeared on DSC, confirming the progress of crosslinking. Dynamic mechanical properties of the polyimide films show that glass transition temperature increased with higher heat treatment, also confirming the progress of crosslinking. Tensile properties of the polyimide films showed that rigid polyimide films consisting of p-intA with BPDA or PMDA have considerably higher modulus than those consisting of m-intA. Cold-drawing of the poly(amic acid) followed by imidization gave much higher modulus in the case of rigid polyimide. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2395–2402, 1997  相似文献   

20.
1,3-Bis(4-aminophenoxy)benzene (TPER) and poly(amic acid) based on TPER and pyromellitic dianhydride (PMDA) were synthesized. After imidization of the poly(amic acid), polyimide based on TPER and PMDA was obtained. The melting process and the specific heat capacity (C p) of TPER were examined by DSC and microcalorimetry, respectively. The melting enthalpy, the melting entropy, and the C p for TPER were obtained. The enthalpy change, the entropy change, and the Gibbs free energy change for TPER were obtained within 283 and 353 K. The thermal decomposition reaction mechanism of the polyimide is classified from the TG–DTG experimental data, and the thermokinetic parameters of the thermal decomposition reaction are E a = 296.87 kJ mol?1and log (A/s?1) = 14.41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号