首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a methodology that permits quantitation of the azimuthal anchoring energy of the nematic liquid crystal 4-cyano-4'-pentyl-biphenyl on surfaces patterned with oligopeptides. The oligopeptide (IYGEFKKKC), an optimized substrate for the Src protein kinase, was covalently immobilized via the terminal cysteine to monolayers of amine-terminated tetra(ethylene glycol) formed on gold films. The measurements of anchoring energies, which were based on a torque-balance method, revealed a systematic decrease in anchoring energy from 3.7 +/- 0.6 microJ/m2 with increasing surface density of oligopeptide. We calculate that a mass density of oligopeptide of less than 1 ng/cm2 can lead to a measurable change in the anchoring energy of the nematic liquid crystal. These results suggest that measurements of anchoring energies of liquid crystals on surfaces may offer the basis of quantitative and label-free methods for detecting biomolecules on surfaces.  相似文献   

2.
Kim ES  Shim CK  Lee JW  Park JW  Choi KY 《The Analyst》2012,137(10):2421-2430
The proper orientation and lateral spacing of antibody molecules are a crucial element for an on-chip immunoassay in which the antibody or its antigen-binding fragments are immobilized on a solid surface. We covalently immobilized a modified protein G (Cys-protein G: protein G with only an N-terminal cysteine) on a dendron-coated surface to control its orientation and lateral spacing simultaneously. The cysteine-specific immobilization of Cys-protein G through the N-terminal cysteine resulted in 2.2-fold higher binding efficiency of Cys-protein G to IgG(2a) capture antibody than its random immobilization via lysine residues. The lateral spacing of 3.2 nm due to the surface modification with the 9-acid dendron molecule contributed to a 1.5-fold increase in the antibody-binding ability of Cys-protein G. Topographic images of atomic force microscopy exhibited a uniform coverage of Cys-protein G molecules immobilized on the thiol-reactive 9-acid dendron surface and homogeneous distribution of antibody bound to Cys-protein G. In the sandwich immunoassay, the control of the orientation of Cys-protein G led to 10-fold higher detection capability for rIL-2 compared with the randomly oriented protein G. The synergistic advantage of the unidirectional orientation and homogeneous lateral spacing of Cys-protein Gs on the dendron-coated surface can be applied to the development of more sensitive and reproducible antibody microarrays.  相似文献   

3.
In the protein chemical synthesis via native chemical ligation (NCL) method with three peptide segments, the N-terminal cysteine residue of middle segment is generally protected by thiazolidine ring. In this paper, we show the novel method for thiazolidine ring opening using 2,2′-dipyridyl disulfide (DPDS). The N-terminal thiazolidine was converted into S-pyridylsulfenylated cysteine residue with DPDS under acidic conditions, and this N-terminally Cys peptide protected with disulfide was applicable to NCL reaction without purification and deprotection steps. DPDS treatment did not remove other Cys protecting groups generally used for regioselective disulfide bond formation reactions. These results indicate that this thiazolidine ring opening reaction is quite useful for the protein chemical synthesis with three-segment NCL strategy.  相似文献   

4.
This contribution describes the synthesis of polyphenylene dendrimers that are functionalized with up to 16 lysine residues or substituted with short peptide sequences composed of 5 lysine or glutamic acid repeats and a C- or N-terminal cysteine residue. Polyphenylene dendrimers were prepared via a sequence of Diels-Alder cycloaddition and deprotection reactions from cyclopentadienone building blocks. Single amino acids could be introduced on the periphery of the dendrimers by using amino acid substituted cyclopentadienones in the last Diels-Alder addition reaction. Alternatively, peptide sequences were attached via a chemoselective reaction, which involved the addition of the sulfhydryl group of a cysteine residue of an oligopeptide to a maleimide moiety present on the surface of the dendrimer. These amino acid and peptide functionalized dendrimers may be of interest as model compounds to study DNA complexation and condensation or as building blocks for the preparation of novel supramolecular architectures via layer-by-layer self-assembly.  相似文献   

5.
Single-molecule force spectroscopy (SMFS) is powerful for studying folding states and mechanical properties of proteins, however, it requires protein immobilization onto force-transducing probes such as cantilevers or microbeads. A common immobilization method relies on coupling lysine residues to carboxylated surfaces using 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS). Because proteins typically contain many lysine groups, this strategy results in a heterogeneous distribution of tether positions. Genetically encoded peptide tags (e.g., ybbR) provide alternative chemistries for achieving site-specific immobilization, but thus far a direct comparison of site-specific vs. lysine-based immobilization strategies to assess effects on the observed mechanical properties was lacking. Here, we compared lysine- vs. ybbR-based protein immobilization in SMFS assays using several model polyprotein systems. Our results show that lysine-based immobilization results in significant signal deterioration for monomeric streptavidin-biotin interactions, and loss of the ability to correctly classify unfolding pathways in a multipathway Cohesin-Dockerin system. We developed a mixed immobilization approach where a site-specifically tethered ligand was used to probe surface-bound proteins immobilized through lysine groups, and found partial recovery of specific signals. The mixed immobilization approach represents a viable alternative for mechanical assays on in vivo-derived samples or other proteins of interest where genetically encoded tags are not feasible.  相似文献   

6.
An ab initio method has been developed to predict helix formation for polypeptides. The approach relies on the systematic analysis of overlapping oligopeptides to determine the helical propensity for individual residues. Detailed atomistic level modeling, including entropic contributions, and solvation/ionization energies calculated through the solution of the Poisson-Boltzmann equation, is utilized. The calculation of probabilities for helix formation is based on the generation of ensembles of low energy conformers. The approach, which is easily amenable to parallelization, is shown to perform very well for several benchmark polypeptide systems, including the bovine pancreatic trypsin inhibitor, the immunoglobulin binding domain of protein G, the chymotrypsin inhibitor 2, the R69 N-terminal domain of phage 434 repressor, and the wheat germ agglutinin.  相似文献   

7.
A theoretical study on oligopeptide chains of glycine-alanine by density functional theory(DFT) is given in this paper. Raman spectra of the oligopeptide chains are examined. The geometric structures, frontier orbital, energy gap, atomic charge distribution, density of states and chemical activity of the side chain are studied at the B3LYP/6-31G(d) level. Results show that, with the number of residues increasing, vibrations of typical functional groups present Raman frequency shift, and the energy gap is gradually reduced. The HOMO and LUMO focus on the amino and carboxyl at the ends of oligopeptides. It is helpful for oligopeptides to self-assemble into chains. In addition, different residues(glycine or alanine) at the ends of chains result in the even-odd effect of orbital energy in the growth process. The size effects of physical and chemical properties only exist when the oligopeptides are shorter, and the phenomenon disappeared as the chain continues to grow.  相似文献   

8.
宋佳一  苏萍  杨烨  杨屹 《色谱》2017,35(3):260-263
建立了一种新型的酶固定化方法,采用DNA链置换反应成功地在单链DNA标记的磁性纳米粒子上实现了酶的链置换无损更替。该技术可实现目标酶的再利用,节约了生产成本。制备的固定化胰蛋白酶微反应器具有较好的重复利用性和高酶切效率,重复使用10次后仍可保持原酶活性的86%;利用链置换反应制备的MNPs@DNATrypsin酶切马心肌红蛋白5 min后,即可获得95%±0%(n=3)的氨基酸序列覆盖率,远超过相同条件下自由酶酶切12 h的结果。实验表明,发展的固定化酶技术具有高磁响应性,便于从反应体系中回收固定化酶和重复使用,同时此技术可显著提高酶活性,因此可用于固定各种重要的酶,同时可将其广泛应用于各种酶促反应中。  相似文献   

9.
We investigated the self‐aggregation of 12 short ionic oligopeptides constituted by 4–7 amino acid residues to establish useful structure–property relationships that might be exploited in the biomedical field by using the concept of molecular Lego. We show that the critical aggregation concentration (CAC) of tetrapeptides decreases with increasing hydrophobicity of neutral residues. Additionally, the dependence of the CAC of isomeric oligopeptides on the distribution of amino acid residues confirms the high tendency to self‐organization of molecules with alternating ionic and neutral residues. Indeed, atomic force microscopy (AFM) images recorded on oligopeptide solutions above the CAC show the presence of either fibrillar or spherical aggregates depending on oligopeptide structure and concentration, steric hindrance, solution pH, and time. The potential of the investigated oligopeptides in tissue engineering applications is supported by their in vitro cytocompatibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 889–897, 2010  相似文献   

10.
A convergent strategy for the synthesis of peptide-oligonucleotide conjugates (POC) is presented. Chemoselective ligation of peptide to oligonucleotide was accomplished by oxime and thiazolidine formation. Oxime conjugation was performed by treating an oxyamine-containing peptide with an aldehyde-containing oligonucleotide or vice versa. Ligation by thiazolidine formation was achieved by coupling a peptide, acylated with a cysteine residue, to an oligonucleotide that was derivatised by an aldehyde function. For both approaches, the conjugates were obtained in good yield without the need for a protection strategy and under mild aqueous conditions. Moreover, the oxime ligation proved useful for directly conjugating duplex oligonucleotides. Combined with molecular biology tools, this methodology opens up new prospects for post-functionalisation of high-molecular-weight DNA structures.  相似文献   

11.
The mode of thioether macrocyclization of peptides containing an N-terminal 2-chloroacetyl group and two or three competing cysteine residues at downstream positions has been extensively studied, leading to a strategy for designated formation of overlapping-bicyclic peptides or dumbbell-type bicyclic peptides.  相似文献   

12.
Solid-phase oligopeptide synthesis has been well developed and most short oligopeptides can now be easily synthesized. However, when a desired oligopeptide forms a secondary structure or includes less reactive amino acids such as aminoisobutyric acid, its terminal amino groups become less reactive and synthesis of the desired oligopeptides becomes difficult. To expand the number of synthetic peptide sequences, we have developed efficient coupling conditions using 3-nitro-l,2,4-triazol-l-yl-tris(pyrrolidin-1-yl)phosphonium hexafluorophosphate (PyNTP) as a highly reactive condensing reagent on an unswellable solid support. PyNTP demonstrated higher reactivity than conventional condensing reagents and the optical purity of the synthesized oligopeptides was sufficiently high for application to general oligopeptide synthesis.  相似文献   

13.
Biofunctional membranes normally involve the random immobilization of biomolecules to porous, polymeric membranes, often through the numerous lysine residues on the protein. In this process, bioactivity is significantly decreased largely due to different orientations of the biomolecule with respect to the membrane or to multiple point attachment. To circumvent this difficulty, while still taking advantage of the immobilization of biomolecules, site-specific immobilization of the biomolecule with the active (or binding) site directed away from the membrane is essential. In this review, we summarize our efforts involving biophysical and bioanalytical chemistry and chemical engineering, together with molecular biology, to develop and characterize such site-specifically membrane immobilized catalytic enzyme bioreactors. Site-directed mutagenesis, gene fusion technology, and post-translational modification methods are employed to effectuate the site-specific membrane immobilization. Electron paramagnetic resonance, in conjunction with active-site specific spin labels, kinetic analyses, and membrane properties are used to characterize these systems. Biofunctional membranes incorporating site-specifically immobilized biomolecules provide greater efficiency of biocatalysis, bioseparations, and bioanalysis.  相似文献   

14.
The immobilization of trypsin on porous glycidyl methacrylate (GMA–GDMA) beads has been investigated. In particular, the distribution within the beads of trypsin and of dextran used for hydrophilizing the bead surface prior to protein immobilization was investigated with confocal microscopy. For the system investigated, the fluorescence intensity profiles obtained when using borate buffer as an ambient solution displayed a distinct minimum at the center of the beads, irrespective of the observation depth. However, by reduction of the refractive index difference between the solution and the beads through the addition of glucose to the aqueous solution, artifacts relating to optical length differences could be reduced. For both low molecular weight fluorescein isothiocyanate (FITC), FITC-labeled trypsin, and FITC-labeled dextran, an essentially homogeneous distribution throughout the beads was observed. This simple “contrast matching” method seems therefore to be an interesting tool when investigating the distribution of immobilized protein in porous chromatography media.  相似文献   

15.
This report describes two related methods for decorating cowpea mosaic virus (CPMV) with luminescent semiconductor nanocrystals (quantum dots, QDs). Variants of CPMV are immobilized on a substrate functionalized with NeutrAvidin using modifications of biotin-avidin binding chemistry in combination with metal affinity coordination. For example, using CPMV mutants expressing available 6-histidine sequences inserted at loops on the viral coat protein, we show that these virus particles can be specifically immobilized on NeutrAvidin functionalized substrates in a controlled fashion via metal-affinity coordination. To accomplish this, a hetero-bifunctional biotin-NTA moiety, activated with nickel, is used as the linker for surface immobilization of CPMV (bridging the CPMVs' histidines to the NeutrAvidin). Two linking chemistries are then employed to achieve CPMV decoration with hydrophilic CdSe-ZnS core-shell QDs; they target the histidine or lysine residues on the exterior virus surface and utilize biotin-avidin interactions. In the first scheme, QDs are immobilized on the surface-tethered CPMV via electrostatic attachment to avidin previously bound to the virus particle. In the second strategy, the lysine residues common to each viral surface asymmetric unit are chemically functionalized with biotin groups and the biotinylated CPMV is discretely immobilized onto the substrate via NeutrAvidin-biotin interactions. The biotin units on the upper exposed surface of the immobilized CPMV then serve as capture sites for QDs conjugated with a mixture of avidin and a second protein, maltose binding protein, which is also used for QD-protein conjugate purification. Characterization of the assembled CPMV and QD structures is presented, and the potential uses for protein-coated QDs functionalized onto this symmetrical virion nanoscaffold are discussed.  相似文献   

16.
Stoichiometric analysis of post‐translational modifications is an emerging strategy for absolute quantification of the fractional abundance of the modification. Herein, a quantitative chemical proteomic workflow for stoichiometric analysis of ubiquitination is reported, named isotopically balanced quantification of ubiquitination (IBAQ‐Ub). The strategy utilizes a new amine‐reactive chemical tag (AcGG‐NHS) that is structurally homologous to the GG remnant of ubiquitin on modified lysine after trypsin cleavage and therefore enables the generation of structurally identical peptides from ubiquitinated and unmodified lysine residues following trypsin digestion and secondary stable isotopic labeling. The strategy is highly robust, sensitive, and accurate with a wide dynamic range using either protein standards or complex cell lysates. Thus, this work provides an efficient chemical proteomics tool for quantitative stoichiometric analysis of ubiquitination signaling pathways.  相似文献   

17.
Yao C  Qi L  Hu W  Wang F  Yang G 《Analytica chimica acta》2011,692(1-2):131-137
A new kind of immobilized trypsin reactor based on sub-micron skeletal polymer monolith has been developed. Covalent immobilization of trypsin on this support was performed using the epoxide functional groups in either a one- or a multi-step reaction. The proteolytic activity of the immobilized trypsin was measured by monitoring the formation of N-α-benzoyl-L-arginine (BA) which is the digestion product of a substrate N-α-benzoyl-L-arginine ethyl ester (BAEE). Results showed that the digestion speed was about 300 times faster than that performed in free solution. The performance of such an enzyme reactor was further demonstrated by digesting protein myoglobin. It has been found that the protein digestion could be achieved in 88 s at 30°C, which is comparable to 24 h digestion in solution at 37°C. Furthermore, the immobilized trypsin exhibits increased stability even after continuous use compared to that in free solution. The present monolithic enzyme-reactor provides a promising platform for the proteomic research.  相似文献   

18.
DNA patterning on surfaces has broad applications in biotechnology, nanotechnology, and other fields of life science. The common patterns make use of the highly selective base pairing which might not be stable enough for further manipulations. Furthermore, the fabrication of well-defined DNA nanostructures on solid surfaces usually lacks chemical linkages to the surface. Here we report a template-free strategy based on "click" chemistry to fabricate spatially controlled DNA nanopatterns immobilized on surfaces. The self-assembly process utilizes DNA with different anchoring sites. The position of anchoring is of crucial importance for the self-assembly process of DNA and greatly influences the assembly of particular DNA nanopatterns. It is shown that the anchoring site in a central position generates tunable nanonetworks with high regularity, compared to DNAs containing anchoring sites at terminal and other positions. The prepared patterns may find applications in DNA capturing and formation of pores and channels and can serve as templates for the patterning using other molecules.  相似文献   

19.
Pectinesterase was immobilized on a porous glass support, which surface was covered with glyceryl residues. The parameters of the immobilization were characterized with respect to the coupling method used as well as the support pore size. Chemical modification level resulted an important parameter in determining the activity of the immobilized derivative. Attachment of the enzyme through thiol groups gave the best results, whereas a nominal pore size of 20 nm seemed to be the most suitable for the demethoxylating activity of the enzyme on citrus pectin. Optimum conditions for activity as well as the inhibition constant for polygalacturonic acid did not change on immobilization, as the Michaelis constant did. Fluorescence spectra revealed a partial unfolding of the enzyme tertiary structure when immobilized.  相似文献   

20.
As part of our program on biochirogenesis of homochiral peptides from racemic precursors, we report the feasibility of obtaining peptides with homochiral sequences composed of up to 25 residues of the same handedness in the polymerization of racemic valine or leucine N-carboxyanhydrides in aqueous solutions, as initiated by amines. The composition of the oligopeptides was determined by MALDI-TOF mass spectrometry, and the sequences of some of the heterochiral diastereoisomers were studied by MALDI-TOF MS/MS performed on samples in which the S enantiomers of the monomer were tagged with deuterium atoms. The process comprises several steps: 1) a Markov mechanism of asymmetric induction in the early stages of the polymerization yields libraries of racemic oligopeptides enriched with isotactic diastereoisomers, together with oligopeptide sequences containing enantiomeric blocks of homochiral residues; 2) the short peptides self-assemble into racemic colloidal architectures that serve as regio-enantioselective templates in the ensuing process of chain elongation; 3) homochiral residues of the amino acids located at the periphery of these colloidal aggregates exert efficient enantioselection, which results in the formation of long isotactic oligopeptides. The final diastereoisomeric distribution of the peptides depends upon the composition of the templates, which is determined by the concentration of the initiator. The racemic mixtures of isotactic peptides can be desymmetrized by using enantiopure methyl esters of alpha-amino acids as initiators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号