首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective preparation of crack-free silica aerogels via ambient drying   总被引:2,自引:0,他引:2  
Effective ambient-drying techniques for synthesizing crack-free silica aerogel bulks from the industrial waterglass have been developed. Silica wet gels were obtained from aqueous colloidal silica sols prepared by ion-exchange of waterglass solution (4–10 wt% SiO2). Crack-free monolithic silica aerogel disks (diameter of 22 mm and thickness of 7 mm) were produced via solvent exchange/surface modification of the wet gels using isopropanol/trimethylchlorosilane/n-Hexane solution, followed by ambient drying. The effects of the silica content in sol and the molar ratio of trimethylchlorosilane/pore water on the morphology and property of final aerogel products were also investigated. The porosity, density, and specific surface area of silica aerogels were in the range of 92–94%, 0.13–0.16 g/cm3, and ∼675 m2/g, respectively. The degree of springback during the ambient drying processing of modified silica gels was 94%.  相似文献   

2.
Synthesis of transparent and crack-free monoliths of silica aerogel by sub-critical drying technique is reported in the present article. Silane ageing with 50% tetraethylorthosilicate:ethanol followed by solvent exchange using ethanol was adopted. The effect of heat-treatment on the textural and physical characteristics of silica aerogel was evaluated. The chosen composition resulted in a high surface area silica aerogel of 1,000 m2 g−1 and a pore volume of 1.4 cm3 g−1 at room temperature. The aerogel heat-treated at 900 °C possessed a surface area of 450 m2 g−1 with a pore volume of 0.4 cm3 g−1. The decrease in surface area and pore volume was associated with the sintering process. The present technique seems advantageous in preserving the high surface area of the material at high temperatures. The XRD studies showed that the amorphous nature of aerogel matrix was retained till 1,400 °C, beyond which it crystallized to phase pure crystoballite.  相似文献   

3.
4.
Silica glass was synthesized form TEOS and deionized water using sol-gel process. To introduce the physicochemical effects of ultrasonic waves, an ultrasonic homogenizer was used to mix reactants instead of adding cosolvents. 2-step method was chosen to separate hydrolysis reaction and condensation reaction, and thus to control the microstructure of wet gels. Wet gels were dried in 5–8 hours without cracks using supercritical drying with ethanol at 300°C and 10.34 MPa. Aerogels thus obtained have hydrophobic surfaces due to the reesterification reactions during supercritical drying. Aerogels were sintered in a tube furnace in the changing atmosphere from N2 through O2 to He. Sudden volume change was started at 1050°C and sintering was completed at 1100°C as expected. Large pores of aerogels allowed fast sintering in 16 and a half hours. Incomplete extraction in supercritical drying step produced crystals during sintering.  相似文献   

5.
6.
Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The experimental results on the study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogels dried at ambient pressure, are reported. Silica sol was prepared by keeping the MeOH/TEOS molar ratio, Acidic water (Oxalic acid) and basic water (NH4OH) concentrations constant at 16.5, 0.001 and 1 M, respectively throughout the experiments and the HMDZ/TEOS molar ratio (h) was varied from 0.34 to 2.1. Finally, the surface modified wet gels were dried at an ambient pressure. The thermal conductivity of the aerogel samples was measured. Further, the humidity study was carried out in 80% humid surrounding at 30 °C temperature over 80 days. The best quality aerogels in terms of low bulk density, thermal conductivity and durability (no moisture absorption) with an only 2% of weight gain were obtained for TEOS: MeOH: Acidic H2O: Basic H2O: HMDZ molar ratio at 1:16.5:0.81:0.50:0.681, respectively. The thermal stability and hydrophobicity of the aerogel have been confirmed with Thermo gravimetric and Differential Thermal (TG–DT) analyses and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Microstructural studies were carried out by Scanning Electron microscopy (SEM).  相似文献   

8.
9.
《Solid State Sciences》2007,9(7):628-635
Considering the need for large-scale production of silica aerogel powders, the present research was aimed to develop a simple, cost-effective and rapid process based on water-glass precursor via ambient pressure drying (APD) route. It has been shown that the surface chemical modification of hydrogels can rapidly be carried out with extremely low doses (e.g. 5 g of hexamethyldisilazane (HMDS) for 100 g of hydrogel) of HMDS by a co-precursor method which makes this process quite cost-effective. The surface modification in the aqueous phase essentially resulted in the displacement of the pore water and the simultaneous one-step solvent exchange using n-hexane converted the hydrogel into an organo-gel in 3 h and thus the total processing time of the aerogel powder production via APD could drastically be reduced to 5 h. The solvent n-hexane could be recollected during the drying stage and it does not add much to the material cost. The aerogel powders with tapping densities and specific surface areas in the range of 0.100–0.309 g/cm3 and 473–776 m2/g, respectively, could be synthesized using this novel route. The surface modification of the aerogel powders was explored by means of X-ray photoelectron spectroscopy (XPS) in conjunction with the Fourier transform infrared (FT-IR) spectroscopy. The textural investigations revealed that the aerogel powders with a wide variation in their pore size distributions and average pore diameters can easily be synthesized by varying the silica content in the sol.  相似文献   

10.
The effect of an organically modified precursor, 3-glycidoxypropyltrimethoxysilane in an ambient pressure process involving aging in silane solution for silica aerogels is presented. The effect of increasing trialkoxysilane/tetraalkoxysilane precursor ratio and the influence of water to Si molar ratio on the gelation and adsorption properties were investigated. An optimum water to Si molar ratio (8) gave the fastest gelation for all precursor ratios indicating a balance between the increase in rate of hydrolysis and a decrease in concentration of the monomers. Surface area analysis proved that in the dried gel, the organic groups are largely present on the pore walls and prevent the condensation of the silanol groups during drying. This in turn prevents pore collapse and further increases the total pore volume. The inclusion of the organically functionalised silane in the process further enhances the ambient pressure drying through this effect.  相似文献   

11.
In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.  相似文献   

12.
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid–base sol–gel polymerization of sodium silicate in aqueous ammonia solution via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The effects of the volume percentage (%V) of TMCS on the physical and textural properties of the beads were investigated. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density (0.081 g/cm3), high surface area (917 m2/g), and large cumulative pore volume (2.8 cm3/g) was obtained when 10%V TMCS was used. Properties of the final product were examined by FE-SEM, TEM, BET, and TG–DT analyses. Surface chemical modifications were confirmed by FTIR spectroscopy. The hydrophobic silica aerogel beads were thermally stable up to 411 °C. We discuss our results and compare our findings for modified versus unmodified silica beads.  相似文献   

13.
介孔SiO2气凝胶的常压干燥制备研究   总被引:4,自引:0,他引:4  
史非  王立久  刘敬肖  曾淼 《无机化学学报》2005,21(11):1632-1636
以廉价的水玻璃为硅源,用乙醇(EtOH) / 三甲基氯硅烷(TMCS) / 庚烷(Heptane)溶液对湿凝胶进行改性,采用一种新的常压干燥工艺合成了SiO2气凝胶。通过TMCS与乙醇、湿凝胶孔隙水及Si-OH基团之间的反应,使湿凝胶的溶剂交换和表面改性得以在一步完成。所合成的SiO2气凝胶为轻质透明的块状固体,密度为0.128~0.136 g·cm-3,孔隙率93.8%~94.2%。利用FTIR、SEM、TEM和BET吸附对气凝胶的微观结构、形貌和性质进行了研究。结果表明,气凝胶为海绵状结构,粒子直径和孔径分布均匀,比表面积559~618 m2·g-1,表面带有较多的Si-CH3基团,呈现出明显的疏水性。  相似文献   

14.
In the study, a novel method of broadening the bandwidth by fabricating the silica aerogel film composited with the chiral nematic liquid crystal (N*-LC) is proposed. Diffusion of chiral compound filled in the silica aerogel resulted in the non-uniform pitch distribution, which can be anchored by UV-radical polymerisation. The results strongly suggested that the reflection bandwidth could be broadened preferably by adjusting the silica aerogel condensation time, the content of UV polymerisable free radical monomer and the polymerisation temperature. The reflection bandwidth was broadened from 270 nm to 878 nm, and the centre wavelength was blue-shifted by 642 nm. A general correlation among the silica aerogel condensation time, the polymerisation condition, and the reflective region will be outlined.  相似文献   

15.
16.
Aerogels are made by heating a wet gel in an autoclave to a temperature and pressure exceeding the critical point of the solvent, then releasing the pressure. This avoids the capillary stresses that usually cause cracking during drying (since there is no liquid/vapor meniscus above the critical point). However, if the pressure is released too quickly, the fluid inside the gel does not have time to flow out of the network, so it expands within the gel and can cause cracking. The pressure in the pores of the network has been analyzed, so that the stress in the gel can be calculated as a function of the rate of pressure release. Quantitative comparisons of the measured strength of the gel with the calculated stresses (for depressurization rates known to cause cracking) are presented in a companion paper.  相似文献   

17.
In the present paper, attempts have been made to produce transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying. The hydrogels were prepared by hydrolysis and polycondensation of sodium silicate (Na2SiO3) in the presence of acetic acid catalyzed water followed by several washing steps with water, methanol and hexane, respectively. The surface modification of the wet gel was carried out using a mixture of hexamethyldisilazane (HMDS) in hexane. Since, the sol–gel chemistry provides a straightforward method to control the physical and optical properties of the aerogels, the influence of various sol–gel parameters viz. gel washing time, molar ratios of CH3COOH/Na2SiO3 and HMDS/Na2SiO3 and silylation period on the physical and optical properties of the aerogels have been investigated. The aerogels have been characterized by bulk density, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA), Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM) studies and Contact angle measurements.  相似文献   

18.
Although supercritical drying avoids the capillary stresses that tend to warp and crack xerogels, there are other sources of stress that interfere with the preparation of monolithic aerogels. In this paper, we present experimental results showing that there is a limit to the rate at which the pressure can be released from the autoclave without causing cracking, and that the maximum rate decreases as the gel size increases. Using an analysis developed in a companion paper, the stresses generated during depressurization are compared to the modulus of rupture of our aerogels. The calculations require knowledge of the pressure-dependence of the density of the vapor (ethanol, in our experiments), as well as the permeability and modulus of the gel network. Measurements of those properties were performed on a series of silica gels made under basic and neutral conditions. We find that the calculated stresses are large enough to account for the cracking of our gels at high rates of depressurization; moreover, the predicted dependence of stress on gel diameter is in agreement with experiment.  相似文献   

19.
Heavy metals pollution is one of today's concerns of human societies. In the present project, mercapto functionalized silica aerogel was used to remove Zn2+ and Mn2+ from aqueous solution. The simultaneous adsorption of these ions has also studied. The kinetics and thermodynamics of the adsorption process as well as various isotherm models have been investigated. The results show that the adsorption process is spontaneous and favorable. The adsorption followed the Langmuir model and the maximum adsorption capacity for manganese and zinc was 1.38 and 1.33?mmol/lit, respectively. The kinetics of the adsorption process corresponds to the pseudo-second order equation. Intra particle diffusion model illustrated a greater affinity to the zinc ion, which confirmed by simultaneous adsorption results.  相似文献   

20.
The successful incorporation of multiwalled carbon nanotubes (MWCNTs) into silica aerogels prepared by sol–gel method is reported herein. Pure silica aerogels prepared using sodium silicate precursor by ambient pressure drying are so fragile that they cannot be used easily. MWCNTs were used as reinforcements to improve the mechanical properties of silica aerogels. Results show that inserting small amounts of MWCNTs in the gels causes enhanced dimensional stability of silica aerogels. The silica aerogels were prepared by doping MWCNTs in silica matrix before gelation. The influence of MWCNTs on some microstructural aspects of silica matrix has been studied using nitrogen adsorption–desorption isotherms. From SEM study it is confirmed that the silica particles get capped on the surface of MWCNTs suggesting an enhanced toughness. Further, FTIR, Raman, EDAX, thermal conductivity and hydrophobicity studies of these doped aerogels were carried out. By addition of MWCNTs, silica aerogels were formed with 706 m2/g BET and 1,200 m2/g Langmuir surface areas and 149o contact angle. Low density (0.052 g/cc) and low thermal conductivity (0.067 W/m K) MWCNTs doped silica aerogels were obtained for the molar ratio of Na2SiO3::H2O::MWCNTs::citric acid::TMCS at 1::146.67::2.5 × 10−3::0.54::9.46 respectively with improved mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号