首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports notable observations regarding the ion charge states of thermally stable cytochrome c, generated using an alternating current (AC) electrospray ionization (ESI) device. An AC ESI sprayer entrains low-mobility ions to accumulate at the meniscus cone tip prior to the ejection of detached aerosols to produce analyte ions. Therefore, as the solvent acidity varies, protein ions entrained in the AC cone tip are found to change conformation less significantly compared with those in the direct current (DC) cone. We acquired the AC ESI mass spectra of cytochrome c at pH range from 2 to 4. Unlike the DC ESI mass spectra showing clear conformation changes due to denaturing, the AC spectra indicated that only partial denaturing occurs even at extremely acidic pH 2. More native cytochrome c in lower charge states therefore remained. Moreover, with a solvent mixture of aqueous buffer and acetonitrile (70:30), partially denatured cytochrome c was still preserved at pH 2 by using AC ESI. Completely denatured proteins are observed at pH 2 by using DC ESI.  相似文献   

2.
A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.
Fig. a
?  相似文献   

3.
A better understanding of nanoelectrospray ionization (nano‐ESI) would be beneficial in further improving the performances of nano‐ESI. In this work, the pulsed high‐voltage (HV) nano‐ESI has been electrically modeled and then systematically characterized by both voltage‐current and mass spectrometry measurements. First, the equivalent resistance of a nano‐ESI source changes with respect to both emitter tip diameter and the HV applied. Increased voltage could improve both spray current and ionization efficiency of the pulsed HV nano‐ESI. Compared with conventional DC HV method, a pulsed HV has less heating effect on the capillary tip and thus allowing the application of a much higher voltage onto a nano‐ESI source. As a result, a pulsed HV nano‐ESI could further boost the ionization efficiency of nano‐ESI by employing even higher voltages than conventional DC nano‐ESI sources.  相似文献   

4.
Electrospray ionization (ESI) tandem mass spectrometry (MS) has simplified analysis of phospholipid mixtures, and, in negative ion mode, permits structural identification of picomole amounts of phospholipid species. Collisionally activated dissociation (CAD) of phospholipid anions yields negative ion tandem mass spectra that contain fragment ions representing the fatty acid substituents as carboxylate anions. Glycerophosphocholine (GPC) lipids contain a quaternary nitrogen moiety and more readily form cationic adducts than anionic species, and positive ion tandem mass spectra of protonated GPC species contain no abundant ions that identify fatty acid substituents. We report here that lithiated adducts of GPC species are readily formed by adding lithium hydroxide to the solution in which phospholipid mixtures are infused into the ESI source. CAD of [MLi+] ions of GPC species yields tandem mass spectra that contain prominent ions representing losses of the fatty acid substituents. These ions and their relative abundances can be used to assign the identities and positions of the fatty acid substituents of GPC species. Tandem mass spectrometric scans monitoring neutral losses of the head-group or of fatty acid substituents from lithiated adducts can be used to identify GPC species in tissue phospholipid mixtures. Similar scans monitoring parents of specific product ions can also be used to identify the fatty acid substituents of GPC species, and this facilitates identification of distinct isobaric contributors to ions observed in the ESI/MS total ion current.  相似文献   

5.
An adjustable low-mass filter has been developed for an electrospray ionization (ESI) source to block ions associated with unwanted background species from entering the mass spectrometer. The low-mass filter is made by using an adjustable potential energy barrier from the conductance-limiting plate of an electrodynamic ion funnel, which prohibits species with higher ion mobilities from exiting the ESI source. We show that this arrangement provides a linear voltage adjustment for low-mass filtering from m/z 0 to 500. Mass filtering above m/z 500 is also performed; however, higher-mass species are attenuated. The mass filter was tested with a liquid chromatography/mass spectrometry (LC/MS) analysis of a bovine serum albumin (BSA) tryptic digest and resulted in the ability to block low-mass, background species, which accounted for 40-70% of the total ion current immediately behind the ESI source during peak elution and detection.  相似文献   

6.
Composition of mobile phase can greatly influence the success of electrospray ionization (ESI)‐interfaced liquid chromatography–mass spectrometry analysis. To investigate the relationship between formic‐acid‐based modification of mobile phase and ESI nebulizing conditions, an API 4000 ESI source and a TSQ Quantum one were compared under the same chromatographic conditions. Ginkgo terpene lactones and flavonols were measured in plasma, which involved using ascorbic acid to circumvent cross‐interference between the analytes. ESI responses to using formic acid included changes in signal intensity, matrix effect, and upper limit of quantification. Significant disparities in the responses were observed between the two ESI sources, suggesting that the use of electrolyte modifier in liquid chromatography mobile phase and the pneumatic nebulization for ESI should be properly balanced to accomplish optimal ESI‐based analysis. The distribution of unpaired ions toward the surface of the initial droplet was assumed to be an important step in the pneumatic ESI process. When using the electrolyte in mobile phase, a too fast droplet reduction by rapid‐heating‐assisted pneumatic nebulization could negatively decrease the time available for the unpaired ions to migrate from droplet interior to its surface. Ascorbic acid was identified as a major interfering substance for the bioanalytical assay; the interference mechanism might be associated with hindering the unpaired analyte ions from distributing toward the droplet surface rather than outcompeting the analyte ions for the limited excess charge on droplets surface. The current work extends the knowledge base of pneumatic ESI, which has implication for optimal use of the ESI‐interfaced liquid chromatography–mass spectrometry technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
End‐capped and intramolecular azofunctional oligocaprolactones were characterized at molecular level by liquid chromatography electrospray ionization mass spectrometry (ESI MS) and NMR spectroscopy. The Disperse Red 19 (DR19) azofunctional oligomers, DC, were synthesized by ring‐opening oligomerization of ε‐caprolactone (ε‐CL) initiated by the hydroxyl groups of DR19 azo dye. The reaction products consist of a minor fraction of end‐capped azo functional oligocaprolactone (α‐DC), that is, a single CL arm oligomer, and a major fraction of intramolecular azo functional oligocaprolactone (β‐DC), that is, a two CL arms oligomer. The chromatographic separation was used to discriminate between α‐DC and β‐DC, and the results were confirmed by MS/MS performed on an ESI ion trap instrument. The results supported by accurate mass data obtained for product ions using an ESI quadrupole time of flight instrument demonstrate the qualitative discrimination at the molecular level between intramolecular and end‐capped azofunctional oligoesters isomers through a relatively simple multistage mass spectrometry experiment. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
During the electrospray ionization (ESI) process, ions move through a heated capillary aperture to be detected on arrival at a mass analyzer. However, the ESI process creates an ion plume, which expands into an ion cloud with an area larger than that of the heated capillary aperture, significantly contributing to an ion loss of 50% due to coulombic repulsion. The use of DC and RF fields to focus ions from the ion source into the vacuum chamber has been proposed in the literature, but the improvement of ion transmission efficiency is limited. To improve ion transmission, in this study we propose a novel method using a home-made golf ball positioned between the ion source and the inlet of the mass analyzer to hydrodynamically focus the ions passing through the golf ball. The ion plume produced by the ESI process passes through the golf ball will reduce the size of the ion cloud then be focused and most of them flowed into the mass analyzer. Therefore, the sensitivity will be improved, the aim of this investigation is to study the enhancing of the signal using golf ball-assisted electrospray ionization liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 20 trace amino acids in complex samples, including tea, urine and serum. The results showed that the analytical performance of the determination of the 20 amino acids in tea, urine and serum samples using the home-made golf ball-assisted ESI source is better than that of a commercial ESI source. The signal intensities of the 20 amino acids were enhanced by factors of 2–2700, 11–2525, and 31–342680 in oolong tea, urine and serum analyses, respectively. The precision of the proposed method ranged from 1–9%, 0.4–9% and 0.4–8% at low, medium and high concentration levels of amino acids, respectively. The home-made golf ball-assisted ESI source effectively increased the signal intensity and enhanced the ion transmission efficiency and is also an easy, convenient and economical device. This technique can be applied to the analysis of trace compounds in complex matrices.  相似文献   

9.
The fragmentation behavior of taxoids was studied using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources with multi-stage tandem mass spectrometry. In the positive ion mode taxoids gave prominent [M+Na]+ and [M+K]+ ions with the ESI source, and [M+NH4]+ or [M+H]+ ions with the APCI source. The MS/MS fragmentations of ions produced by APCI and ESI sources were very similar. For both sources, the presence of cinnamoyl or benzoyl groups could be characterized by initial losses of 148 or 122 u, respectively, from molecular adduct ions. However, the elimination of cinnamic acid was relatively difficult for the molecular adduct ions formed by APCI, and was comparable in importance to the loss of acetic acid. The other fragments involved losses of CH2CO, CO, and H2O. The 5/7/6 type taxoids underwent characteristic losses of 58 or 118 u from ions produced by both APCI and ESI sources. The fragmentation behavior was remarkably influenced by substitution locations. The elimination of the C-10 benzoyl group was usually the first fragmentation step, while that of the C-2 benzoyl group was relatively difficult. The acetoxyl group at C-7 was more active than those at C-2, C-9, and C-10, which in turn were more active than that at C-4. These fragmentation rules could facilitate the rapid screening and structural characterization of taxoids in plant extracts by high-performance liquid chromatography/mass spectrometry (HPLC/MS).  相似文献   

10.
Six synthesized 6-nitroquipazine derivatives were examined by electron ionization (EI) and electrospray ionization (ESI) mass spectrometry in positive and negative ion mode. The compounds exhibit high affinity for the serotonin transporter (SERT) and belong to a new class of SERT inhibitors. The EI mass spectra registered in negative ion mode showed prominent molecular ions for all the compounds studied. All EI mass spectra and all ESI mass spectra showed similar fragmentation pathways of molecular ions, but the pathways differed between EI and ESI. The differences were explained with the aid of theoretical evaluation of the stability of the respective radical ions (EI MS) and protonated ions (ESI MS).  相似文献   

11.
A linear time-of-flight mass spectrometer (TOFMS) has been designed, constructed, and coupled with a glow discharge source in microsecond pulsed mode (MSPGD). Orthogonal acceleration, a DC quadrupole and deflecting pulse techniques are used to diminish kinetic distribution and the spatial distribution of ions, and for deflecting Ar+ ions in their flight path. Comparison was made in the same discharge source between MSPGD and DC discharge. The continuous ion current is only 0.2 nA in the DC discharge mode, while the peak ion current reaches over 100 nA in the MSPGD mode. In addition, the ratio of the repelled ions to total ions is much higher in MSPGD than with a DC discharge in TOFMS. The mechanism of MSPGD is discussed. A resolving power of 500 was achieved, which is excellent for elemental analysis. To the authors' knowledge, this is the first time that a MSPGD-TOFMS combination has been described. The system is now being further optimized to improve its performance.  相似文献   

12.
Steroidal glycoalkaloids (SGAs) extracted from tomato leaves and berries (Lycopersicon esculentum Mill.) were separated and identified using optimized reversed-phase liquid chromatography with electrospray ionization (ESI) and ion trap mass spectrometry (ITMS). The ESI source polarity and chromatographic conditions were evaluated. The ESI spectra contain valuable information, which includes the mass of SGAs, the mass of the aglycones, and several characteristic fragment ions. Cleavage at the interglycosidic bonds proximal to the aglycones is the most prominent process in the ESI process. A protonated molecule, [M+H]+, accompanied by a mixed adduct ion, [M+H+Na]2+, was observed for alpha-tomatine (i.e., m/z 1034.7 and 528.9) and dehydrotomatine (i.e., m/z 1032.6 and 527.9) in positive ion mode spectra. The structures of these tomato glycoalkaloids were confirmed using tandem mass spectrometry. The identification of a new alpha-tomatine isomer glycoalkaloid, named filotomatine (MW 1033), which shares a common tetrasaccharide structure (i.e., lycotretraose) with alpha-tomatine and dehydrotomatine, and soladulcidine as an aglycone, is described for the first time. It occurs in significant amounts in the extracts of wild tomato foliage. Multistage mass spectrometry both of the protonated molecules and of the doubly charged ions was used for detailed structural elucidation of SGAs. Key fragmentations and regularities in fragmentation pathways are described and the fragmentation mechanisms involved are proposed.  相似文献   

13.
This paper compares two liquid introduction atmospheric pressure ionization techniques for the analysis of alkyl ethoxysulfate (AES) anionic surfactant mixtures by mass spectrometry, i. e., electrospray ionization (ESI) in both positive and negative ion modes and atmospheric pressure chemical ionization (APCI) in positive ion mode, using a triple quadrupole mass spectrometer. Two ions are observed in ESI(+) for each individual AES component, [M + Na]+ and a “desulfated” ion [M − SO3 + H]+, whereas only one ion, [M − Na] is observed for each AES component in ESI(−). APCI(+) produces a protonated, “desulfated” ion of the form [M − NaSO3 + 2H]+ for each AES species in the mixture under low cone voltage (10 V) conditions. The mass spectral ion intensities of the individual AES components in either the series from ESI(+) or APCI(+) can be used to obtain an estimate of their relative concentrations in the mixture and of the average ethoxylate (EO) number of the sample. The precursor ions produced by either ESI(+) or ESI(−), when subjected to low-energy (50 eV) collision-induced dissociation, do not fragment to give ions that provide much structural information. The protonated, desulfated ions produced by APCI(+) form fragment ions which reveal structural information about the precursor ions, including alkyl chain length and EO number, under similar conditions. APCI(+) is less susceptible to matrix effects for quantitative work than ESI(+). Thus APCI(+) provides an additional tool for the analysis of anionic surfactants such as AES, especially in complex mixtures where tandem mass spectrometry is required for the identification of the individual components.  相似文献   

14.
The determination of seven saponins in crude plant extracts by electrospray ionization mass spectrometry (ESI-MS) and fast atom bombardment mass spectrometry (FAB-MS) is described. Distinct protonated and natriated (Na-adduct) molecular ions in ESI-MS spectra readily provide molecular weight information, which can be further verified using clusters of molecular ions. Saponin mixtures can be analyzed by ESIMS on varying the potential difference between the capillary and skimmer in the ESI source to decompose impurities. ESI-MS uses less amount of sample than that required by FAB-MS. ESI-MS does not produce structural information, however. The FAB-MS spectra consist mainly of protonated and deprotonated molecular ions with limited structural information. (-)-FAB-MS is more suitable for analyzing saponin samples than the (+)-FAB-MS.  相似文献   

15.
A new ion source has been developed for Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) that enables quick changes between matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) modes. When operating as an ESI source, the sample solution is sprayed through an angled nebulizer. The generated ions pass through a glass capillary followed by a skimmer and three sequential hexapole ion guides. Ions can be accumulated in the third hexapole (storage hexapole) before they are injected into the ICR trap. The second hexapole is mounted on a movable platform which also carries the MALDI sample plate. During the switch from ESI to MALDI, this platform moves the second hexapole out of the hexapole series and locates a MALDI sample plate with 384 sample positions into the area directly in front of the storage hexapole. The storage hexapole is in a medium pressure chamber (MPC) which has windows both for the incoming laser beam and for the observation optics, as well as a gas tube for pulsing collision gas into the chamber. During the MALDI operation the focused laser beam enters the MPC, passes between the hexapole rods and irradiates a MALDI sample on the target plate. The sample molecules are desorbed/ionized into the storage hexapole and simultaneously cooled by collisions with the pulsed gas. Ions desorbed from multiple laser shots can be accumulated in this hexapole before they are transferred to the ICR trap. With the combined ion source a computer-controlled switch between MALDI and ESI modes is possible in less than a minute, depending on the position of the MALDI target on the 384-spot plate. Immediate acquisition of mass spectra is possible after mode switching without the need for tuning or re-calibration.  相似文献   

16.
Five well‐known active naphtodianthrone constituents of Hypericum perforatum (St John's Wort) extracts have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICRMS) and ESI‐FTICRMSn. The studied compounds were hypericin, pseudohypericin, protohypericin, protopseudohypericin (biosynthetic precursors of the two former compounds, respectively) and isopseudohypericin (alkaline degradation product of pseudohypericin). Dissociation mass spectrometry measurements performed on the [M–H]? ion presented a variable efficiency as a function of the used activation mode. Sustained off‐resonance irradiation collision‐induced dissociation (SORI–CID) only led to a restricted number of fragment ions. In contrast, IRMPD ensured the detection of numerous product ions. Ions detected in ESI‐FTICRMS and ESI‐FTICRMSn experiments were measured with a very high mass accuracy (typically mass error is lower than 0.5 mDa at m/z close to 500) that allowed unambiguous formulae to be assigned to each signal observed in a mass spectrum. In spite of similar structures, specific fragmentation patterns were observed for the different compounds investigated. This study may be useful in the future to characterize in natural extracts these compounds (or derivatives of these compounds) by liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments by considering the MS/MS transitions highlighted in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
电喷雾电离质谱在化学中应用新进展   总被引:11,自引:0,他引:11  
魏先文  徐正 《有机化学》1999,19(1):97-103
电喷雾电离质谱(ESI-MS)是本世纪发展的非常重要的质谱,具有无碎片的特点,可分析检测非挥发性的、极性的、热不稳定的化合物。评述了ESI-MS在富勒烯化学、无机配合物、簇合物、有机化学反应,金属有机化合物及超分子化学中的应用进展。  相似文献   

18.
The potential of electrospray ionization (ESI) mass spectrometry (MS) to detect non-covalent protein complexes has been demonstrated repeatedly. However, questions about correlation of the solution and gas-phase structures of these complexes still produce vigorous scientific discussion. Here, we demonstrate the evaluation of the gas-phase binding of non-covalent protein complexes formed between bovine pancreatic trypsin inhibitor (BPTI) and its target enzymes over a wide range of dissociation constants. Non-covalent protein complexes were detected by ESI-MS. The abundance of the complex ions in the mass spectra is less than expected from the values of the dissociation constants of the complexes in solution. Collisionally activated dissociation (CAD) tandem mass spectrometry (MS/MS) and a collision model for ion activation were used to evaluate the binding of non-covalent complexes in the gas phase. The internal energy required to induce dissociation was calculated for three collision gases (Ne, Ar, Kr) over a wide range of collision gas pressures and energies using an electrospray ionization source. The order of binding energies of the gas-phase ions for non-covalent protein complexes formed by the ESI source and assessed using CAD-MS/MS appears to differ from that of the solution complexes. The implication is that solution structure of these complexes was not preserved in the gas phase.  相似文献   

19.
徐福兴  王亮  罗婵  丁传凡 《分析化学》2011,(10):1501-1505
本研究设计了一种新型用于二次离子质谱的一次离子源及其离子光学系统.通过此一次离子源,大气压下产生的一次离子可以被加速、聚焦并传输到位于真空条件下的样品表面并电离样品得到可供质谱仪分析的二次离子.通过理论模拟结合实验系统研究了此一次离子源的主要组成部分——离子光学系统的原理、结构和性能.以电喷雾电离源为例,成功地将大气压...  相似文献   

20.
Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号