首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CdSe nanoparticles were synthesized in comparatively mild conditions from Na2SeSO3 and CdCl2 in aqueous gelatine solutions. Kinetics of the formation and growth of CdSe nanocrystals as well as the effect of various parameters of reacting mixture on the size of CdSe nanocrystals are investigated. Optical properties of thin gelatine films, containing CdSe nanoparticles of different size, are characterized using absorption and Raman spectroscopy.  相似文献   

2.
Copper oxalate was used as a precursor to prepare metallic copper nanoparticles by thermal decomposition. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and UV–Vis spectroscopy. XRD analysis revealed broad pattern for fcc crystal structure of copper metal. The particle size by use of Debye–Scherrer’s equation was calculated to be about 40 nm.  相似文献   

3.
A simple preparation method of gold nanoparticles (AuNPs) with 4-acylamidobenzenethiol derivative (BD) was improved to obtain the larger size of AuNPs which exhibited localized surface plasmon resonance. The spectroscopic characterizations of two kinds of BD-stabilized AuNPs were carried out by means of ATR-FTIR and Raman spectroscopy in order to clarify the conformation and orientation of BDs adsorbed on AuNPs. The relation between the stability of AuNPs and the adsorbed states of BDs were also discussed. The average sizes of the resulting AuNPs were 18 nm for BD1 and 30 nm for BD2, respectively. It was found that the BD1-capped AuNPs formed large aggregates. The results of vibrational spectroscopy revealed that loosely packed self-assembled monolayer (SAM) of BD1 molecules was formed on the surface of the AuNPs; on the other hand, densely packed SAM was formed in the case of BD2. We concluded the difference behavior between the two types of molecules was caused by the functional groups. The sulfuryl groups of BD2 induced highly ordered SAM and suppressed aggregate formation of AuNPs.  相似文献   

4.
Herein, we report the development of extremely sensitive sandwich assay of kanamycin using a combination of anti-kanamycin functionalized hybrid magnetic (Fe3O4) nanoparticles (MNPs) and 2-mercaptobenzothiazole labeled Au-core@Ag-shell nanoparticles as the recognition and surface-enhanced Raman scattering (SERS) substrate, respectively. The hybrid MNPs were first prepared via surface-mediated RAFT polymerization of N-acryloyl-l-glutamic acid in the presence of 2-(butylsulfanylcarbonylthiolsulfanyl) propionic acid-modified MNPs as a RAFT agent and then biofunctionalized with anti-kanamycin, which are both specific for kanamycin and can be collected via a simple magnet. After separating kanamycin from the sample matrix, they were sandwiched with the SERS substrate. According to our experimental results, the limit of detection (LOD) was determined to be 2 pg mL−1, this value being about 3–7 times more than sensitive than the LOD of previously reported results, which can be explained by the higher SERS activity of silver coated gold nanoparticles. The analysis time took less than 10 min, including washing and optical detection steps. Furthermore, the sandwich assay was evaluated for investigating the kanamycin specificity on neomycin, gentamycin and streptomycin and detecting kanamycin in artificially contaminated milk.  相似文献   

5.
It was established that PbS nanoparticles significantly increase the rate of formation of lead selenide during the reaction of Pb(NO3)2 and Na2SeSO3 in aqueous solutions of polymers. It was shown that the reaction product consists of PbS/PbSe nanoparticles with a “PbS core-PbSe shell” structure. A correlation was found between the forbidden band widths of the PbS nanoparticles and the PbS/PbSe nanostructures formed during the reaction. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 6, pp. 339–344, November–December, 2006.  相似文献   

6.
Cadmium selenide nanoparticles formation at the interaction between CdCl2 and Na2SeSO3 in aqueous solutions of sodium polyphosphate and gelatin has been studied. Structural and optical properties of CdSe nanoparticles have been characterized. It has been shown that the temperature and the ratio of reagents concentrations are the basic parameters, controlling the size of CdSe nanoparticles. Photocatalytic activity of CdS nanoparticles in Na2SeSO3 reduction has been found and investigated; structural and optical properties of binary CdS/CdSe nanoparticles have been characterized. This photoreaction, when carried out in the presence of CdCl2, results in the formation of composite CdS/CdSe nanoparticles. It has been shown that slow interaction of adsorbed selenosulfate with surface-trapped CdS conduction band electrons is the limiting stage of the photocatalytic reaction.  相似文献   

7.
Nanoparticles have been found to possess unique advantages in many fields, especially in the field of cancer treatment. Herein, based on the unique physical and chemical properties of natural polysaccharides, the polysaccharide from the edible and medicinal fruits of Chaenomeles speciosa was prepared, and the complex nanoparticles constructed by combining C. speciosa polysaccharide with selenium have been successfully developed by a chemical method. Monodisperse spherical nanoparticles with the particle size of 80.5 nm were characterized by various methods, which exhibited ideal size distribution and prominent stability under physiological conditions and alkaline conditions. Cellular studies demonstrated the nanoparticles significantly inhibited the growth of MCF-7 cells with an IC50 value of 8.37 ± 0.97 μg/mL through inducing the apoptosis and arresting the cell circle at S phase. Moreover, the zebrafish assays confirmed the antitumor effects of the nanoparticles, which suppressed the proliferation and migration of tumor and blocked the angiogenesis of transgenic zebrafish. Collectively, the results suggested that the nanoparticles may be considered as a candidate agent to treat breast cancer.  相似文献   

8.
Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these “Poly-SERS” films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl and these materials allowed phenytoin to be detected at 1.8 mg L−1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10–20 mg L−1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life.  相似文献   

9.
Vibrational and optical properties of MoO3 thin films have been studied by Raman and infrared spectroscopy. The films were deposited onto Si substrates at a temperature of 150 °C by chemical vapor deposition of Mo(CO)6 at atmospheric pressure and different amounts of oxygen in the reactor. The Raman and IR spectral analyses show that the as-deposited films are in general amorphous. Post-deposition annealing at 300 and 400 °C leads to crystallization and the MoO3 film structure is a mixture of orthorhombic and monoclinic MoO3 modifications. Transformation of the monoclinic crystallographic modification to a thoroughly orthorhombic layered structure is observed for films heated at temperatures above 400 °C. Electronic Publication  相似文献   

10.
Thermal decomposition of jarosites of potassium,sodium and lead   总被引:1,自引:0,他引:1  
Summary Jarosites are a group of minerals formed in evaporite deposits and form a component of efflorescence. As such the minerals can function as cation and heavy metal collectors. Thermogravimetry coupled to mass spectrometry has been used to study three Australian jarosites which are predominantly K, Na and Pb jarosites. Mass loss steps of K-jarosite occur over the 130 to 330 and 500 to 622°C temperature range and are attributed to dehydroxylation and desulphation. In contrast the behaviour of the thermal decomposition of Na-jarosite shows three mass loss steps at 215 to 230, 316 to 352 and 555 to 595°C. The first mass loss step for Na-jarosite is attributed to deprotonation. For Pb-jarosite two mass loss steps associated with dehydroxylation are observed at 390 and 418°C and a third mass loss step at 531°C is attributed to the loss of SO3. Thermal analysis is an excellent technique for the study of jarosites. The analysis depends heavily on the actual composition of the jarosite.  相似文献   

11.
In this paper, Barium Strontium Tungstate (Ba1−xSrx)WO4 crystals with (x = 0; 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) were prepared by standard wet milling ceramic preparation method. These crystals were structurally characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopic techniques. The shape, growth and average crystal size distribution of these crystals were investigated by a scanning electron microscope (SEM). Their optical properties were investigated by ultraviolet visible (UV–vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all the crystals present a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 6 Raman active modes in range from 100 to 1000 cm−1, while the FT-IR spectra presented 2 infrared active modes in range from 500 to 1000 cm−1. SEM micrographs showed well sintered BaWO4 grains, while the substitution of Sr induced modifications in the shape and reduction in the grain size. UV–vis absorption measurements evidenced an increase in the values of the optical band gap (from 4.36 to 4.53 eV) with the increase of Sr into BaWO4 lattice. Dielectric constant, temperature coefficient of resonant frequency (τf), quality factors were measured with Hakki–Coleman technique. The value of τf found −43.68 ppm/°C for BaWO4 which increased to −21.40 ppm/°C for the SrWO4.  相似文献   

12.
In this paper, bradykinin (BK), an endogenous peptide hormone, which is involved in a number of physiological and pathophysiological processes was deposited onto the colloidal Au nanoparticles. The surface-enhanced Raman spectroscopy (SERS) was used to determine the adsorption mode of BK under different environmental conditions, including: excitation wavelengths (514.5 nm and 785.0 nm), pH of aqueous sol solutions (from pH = 3 to pH = 11), and size of the colloidal nanoparticles (10, 20, and 50 nm). The metal surface plasmon of the colloidal suspended Au nanoparticles was examined by ultraviolet-visible (UV–vis) spectroscopy. The results showed that the C-terminal part of BK plays a crucial role in the adsorption process onto the colloidal suspended Au particles. The Phe5/8 and Arg9 residues of BK mainly participate in the interactions with the colloidal Au nanoparticles. At acidic pH of the solution (pH = 3), the BK COO terminal group through the both oxygen atoms strongly binds to the Au nanoparticles. The Phe5/Phe8 rings adopt tilted orientation with respect to the colloidal Au nanoparticles with diameters of 10 and 20 nm. As the particle size increases to 50 nm, the flat orientation of the Phe ring(s) with respect to the Au nanoparticles is observed.  相似文献   

13.
We report on the spontaneous covalent growth of monomolecular adlayers on mixed nickel-zinc nanoferrite colloidal suspensions (ferrofluids). Synthesized nanoparticles were subjected to surface modification by means of acid chloride chemistry, leading to the formation of covalent bonds between the hydroxy groups at the nanoparticle surface and the acid chloride molecules. This procedure can be easily tailored to allow for the formation of adlayers containing both hydrophobic and hydrophilic regions stacked at predetermined distances from the magnetic core, and also providing the nanoferrites with functional carboxy groups capable of further modifications with, for example, drug molecules. Here, fluorophore aminopyrene molecules were bound to such modified nanoferrites through amide bonds. We also used the same chemistry to modify the surface with covalently bound long-chain palmitoyl moieties, and for comparison we also modified the nanoferrite surface by simple adsorption of oleic acid. Both procedures made the surface highly hydrophobic. These hydrophobic colloids were subsequently spread on an aqueous surface to form Langmuir monolayers with different characteristics. Moreover, since uniformity of size is crucial in a number of applications, we propose an efficient way of sorting the magnetic nanoparticles by size in their colloidal suspension. The suspension is centrifuged at increasing rotational speed and the fractions are collected after each run. The mean size of nanoferrite in each fraction was measured by the powder X-ray diffraction (PXRD) technique.  相似文献   

14.
ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn1−xMgxO alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn2+ ions are successfully substituted by Mg2+ ions in the ZnO lattice. In Raman-scattering studies, the change of E2(high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm−1 are presumably attributed to the Mg-related vibrational modes.  相似文献   

15.
Highly monodispersed polystyrene (PS) nanoparticles were prepared via the reversible addition fragmentation transfer (RAFT) living radical emulsion polymerization technique using a sur‐iniferter, 4‐(2‐hydroxyethyl)piperazine‐1‐carbodithioicacid benzylether (HPCB). The monodispersed nanoparticles were colored by various methods, namely random and block copolymeriztion, the end group reaction and the adsorption method. For the coloration of the block and random copolymer monodispersed nanoparticles, a color pre‐monomer was previously synthesized with a vinyl functional site. Dynamic light scattering and scanning electron microscopy were the main tools used to analyze the size and distribution of the prepared nanoparticles. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Glass samples with composition (70B2O3–29Bi2O3–1Dy2O3) modified with Barium titanate (BT), where BT is added in different successive weight percents, have been synthesized by conventional melt quenching technique. X-ray diffraction studies were performed in order to confirm the amorphous nature of the samples. The density of the samples has been found to decrease with an increase in the BT content, whereas an opposite trend has been observed in the molar volume. The analysis of FTIR and Raman spectra of the samples depicts that the glass network is built up of mainly BiO6, BiO3, BO3 and BO4 units. Its detailed analysis also revealed that the glass structure depends upon the amount of BT in the glass matrix and hence it acts as a modifier in the glass network. Introduction of BT into the glass matrix leads to the conversion of BO3 trigonal units into BO4 tetrahedral units, which results in a decrease in the degree of disorder in the glass network and makes the glass system more stable. The values of Urbach energy obtained for the prepared samples also confirmed the decrease in disorder in the glass network. The optical absorption measurements carried out for well-polished samples show a decrease in optical band gap energy with an increase in BT content whereas the molar refractivity shows the reverse trend. The Hydrogenic excitonic model applied to the studied glasses suggested that the present glass system favors direct transitions. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.  相似文献   

17.
Active surface-enhanced Raman scattering (SERS) silver nanoparticles substrate was prepared by multiple depositions of Ag nanoparticles on glass slides. The substrate is based on five depositions of Ag nanoparticles on 3-aminopropyl-trimetoxisilane (APTMS) modified glass slides, using APTMS sol–gel as linker molecules between silver layers. The SERS performance of the substrate was investigated using 4-aminobenzenethiol (4-ABT) as Raman probe molecule. The spectral analyses reveal a 4-ABT Raman signal enhancement of band intensities, which allow the detection of this compound in different solutions. The average SERS intensity decreases significantly in 4-ABT diluted solutions (from 10−4 to 10−6 mol L−1), but the compound may still be detected with high signal/noise ratio. The obtained results demonstrate that the Ag nanoparticles sensor has a great potential as SERS substrate.  相似文献   

18.
《Arabian Journal of Chemistry》2020,13(12):8662-8670
New and improved approaches are urgently needed to fight the increasing number of multi-drug resistant bacteria. The antibacterial effect of silver nanoparticles (AgNPs) prepared by standardized chemical and biological syntheses is compered here. Biological systems included extracts of Opuntia ficus-indica mucilage and extracellular growth broth of Aspergillus niger and Bacillus megaterium. The nanoparticles were characterized by infrared spectroscopy, IR, and transmission electron microscopy. All of the AgNPs shared characteristic IR peaks and had an average size of 20–60 nm. The AgNPs were mainly spherical regardless of synthetic path. The synthesis based on the extracellular broth of the fungus, due to the highest biomass and active compounds concentration, resulted in a high yield of nanoparticle formation. These AgNPs also exhibited the highest inhibition zone against Salmonella typhimurium and Staphylococcus aureus. The syntheses reported here have no significant influence on AgNPs physical characteristics, as compared to literature, but represent processes with shorter reaction time. Additionally, the fungal based nanoparticles have superior antibacterial characteristics.  相似文献   

19.
20.
Switchable fluorescent silica nanoparticles have been prepared by covalently incorporating a fluorophore and a photochromic compound inside the particle core. The fluorescence can be switched reversibly between an on‐ and off‐state via energy transfer. The particles were synthesized using different amounts of the photoswitchable compound (spiropyran) and the fluorophore (rhodamine B) in a size distribution between 98 and 140 nm and were characterized in terms of size, switching properties, and fluorescence efficiency by TEM, and UV\Vis and fluorescence spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号