首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using ESR and IR spectroscopy, the structures of >Si(O–C·=O)(CH2–CH3) (1) and >Si(CH2–CH·–CH3)(CH2–CH3) (2) radicals were deciphered. The directions and kinetic parameters of reactions of intramolecular rearrangements in these radicals were determined. The reactions of hydrogen atom abstraction in radical (1) from the CH2 and CH3 groups were studied. It was found that the endothermic reaction of hydrogen atom abstraction from the methyl group occurs at a higher rate than the exothermic reaction with the methylene group. The differences are determined by changes in the size of a cyclic transition state. Based on the experimental data, the strengths of separate C–H bonds in surface fragments are compared. The rearrangement >Si(CH2–CH·–CH3)(CH2–CH3) >Si(C·(CH3)2)(CH2–CH3) was discovered and its mechanism was determined. One of its steps is the skeletal isomerization Si- (2)- . (1)Si- (1)- . (2). Experimental data are analyzed using the results of quantum-chemical calculations of model systems.  相似文献   

2.
1 INTRODUCTION Recently, the researches on inorganic-organic hy-brid compounds represent an advanced field in mate-rial science[1]. At the molecular level, the combina-tion of two extremely different components providesan avenue to design new hybrid materials as well asthe ability to modulate properties of one or more ofthe components[2~6]. Some attractive properties, suchas efficient luminescence[2~4], ideal thermal and me-chanical stability, interesting magnetic[5], non-linearoptical[…  相似文献   

3.
The title compounds have been respectively synthesized by solution process and solvothermal reaction, and their crystal structures were determined by X-ray diffraction method. For (CH3CH2CH2CH2NH3)6(BiI6)(I)2I3 1, it crystallizes in tficlinic, space group P1^- with Mr = 2049.76, a = 8.5719(1), b = 11.7461(3), c = 15.700(1)A, V = 1451.4(1)A^3, Z = 1, Dc = 2.345 g/cm^3, F(000) = 924, μ(MoKα) = 8.907 mm^-1, T = 293(2) K, the final R = 0.0655 and wR = 0.0804 for 2399 observed reflections with I 〉 2σ(I). For (NH3CH2CH2NH3)2Bi2I10 2, it crystallizes in monoclinic, space group P21/n with Mr= 1811.20, a = 8.434(4), b = 13.862(6), c = 13.362(6)A, V = 1499.9(12)A^3, Z = 2, Dc = 4.010 g/cm^3, F(000) = 1536,μ(MoKα) = 22.007 mm^-1, T = 293(2) K, the final R = 0.0584 and wR = 0.1451 for 1798 observed reflections with I 〉 2σ(I). The structures of 1 and 2 contain halobismuthate monomer and dimers, respectively. It is noteworthy that the dimers and their organic counters in 2 connect each other by N…I hydrogen bonds to form a layered structure, and the electrostatic interactions and crystal packing forces between layers give rise to the packing of the crystal. The optical absorption spectra of 1 and 2 reveal the appearance of sharp optical gaps of 2.13 and 2.01 eV, respectively.  相似文献   

4.
Russian Journal of Coordination Chemistry - Crystallization of the Ph3Sb(O2CCH2?CH=CH2)2 complex upon fast solvent (benzene) evaporation gives monoclinic crystals (I), whereas in the case of...  相似文献   

5.
We report the reaction of a sterically congested NHC–Zn(CH2CH3)2 Lewis adduct (1) prepared through reaction of an equimolar ratio of 1,3-di-tert-butylimidazol-2-ylidene and diethyl zinc, with various substituted phenols (4-tert-butyl-phenol, 2,6-di-tert-butyl-4-methyl phenol, and 1-bromo-4,6-di-tert-butyl phenol). The NHC–Zn dative bond was cleaved in each of the reactions with the substituted phenols to afford the corresponding ionic complexes of imidazolium cation and aryloxo-zincate, [{(4-CMe3C6H4O)2Zn(μ-OC6H4-4-CMe3)}2{(1,3-(CMe3)2-ImCH}2] (2), [{(2,6-(CMe3)2-4-Me-C6H3O)2}Zn{(1,3-(CMe3)2-ImCH}] (3), and [{(1-Br-3,5-(CMe3)2C6H2O)2}2-Zn{(1,3-(CMe3)2-ImCH}] (4), where 1,3-(CMe3)2-ImCH) is imidazolium carbocation. The molecular structures of 1–4 were established by X-ray diffraction analyses and from the solid-state structures of 2–4, it was confirmed that, in all the compounds, zinc ions are coordinated through substituted phenolate groups.  相似文献   

6.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

7.
Taking into account the changes of the geometric shielding effect in a molecule as the incident electron energy varies, an empirical fraction, which depends on the energy of the incident electrons, the target's molecular dimension and the atomic and electronic numbers in the molecule, is presented. Using this empirical fraction, a new formulation of the additivity rule is proposed. Using the new additivity rule, the total cross sections of electron scattering by CO2, C2H2, CHCl3, CH2Cl2, CH3Cl, CHF3, CH2F2 and CH3F are calculated at the Hartree–Fork level at 30–5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories, and good agreement is obtained over a wide energy range, especially above 100 eV.  相似文献   

8.
9.
The isomerization of CH3S(OH)CH2 to CH3S(O)CH3 in the absence and presence of water has been investigated at the G3XMP2//B3LYP/6-311 + G(2df, p) level. The naked isomerization, the reaction without water, gives the high barrier height (21.56 kcal.mol^-1). Three models are constructed to describe the water influence on the isomerization, that is, water molecules are the catalyst and the microsolvation, and water molecules act as the catalyst and microsolvation simultaneously. Our results show that the isomerization barrier heights of CH3S(OH)CH2 to CH3S(O)CH3 are reduced by 12.32, 11.04, and 7.80 kcal.mol^-1, respectively, when one, two, and three water molecules are performed as catalyst, in contrast to the naked isomerization. Moreover, the rate constants of the isomerization are calculated using the transition state theory with the Wigner tunneling correction over the temperature range of 240-425 K. We find that the rate constant of a single water molecule as the catalyst is 1.58 times larger than the naked isomerization at 325 K, whereas it is slower by 6 orders of magnitude when water molecule serves as the microsolvation at 325 K, compared to naked reaction. So the water-catalyzed isomerization of CH3S(OH)CH2 to CH3S(O)CH3 is predicted to be the key role in lowering the activation energy. The isomerization involving water molecules acting as mierosolvation is unfavorable under atmospheric conditions.  相似文献   

10.
The potential energy surfaces of the CF(3)CH═CH(2) + OH reaction have been investigated at the BMC-CCSD level based on the geometric parameters optimized at the MP2/6-311++G(d,p) level. Various possible H (or F)-abstraction and addition/elimination pathways are considered. Temperature- and pressure-dependent rate constants have been determined using Rice-Ramsperger-Kassel-Marcus theory with tunneling correction. It is shown that IM1 (CF(3)CHCH(2)OH) and IM2 (CF(3)CHOHCH(2)) formed by collisional stabilization are major products at 100 Torr pressure of Ar and in the temperature range of T < 700 K (at P = 700 Torr with N(2) as bath gas, T ≤ 900 K), whereas CH(2)═CHOH and CF(3) produced by the addition/elimination pathway are the dominant end products at 700-2000 K. The production of CF(3)CHCH and CF(3)CCH(2) produced by hydrogen abstractions become important at T ≥ 2000 K. The calculated results are in good agreement with available experimental data. The present theoretical study is helpful for the understanding the characteristics of the reaction of CF(3)CH═CH(2) + OH.  相似文献   

11.
The new copper(II) tetraphosphonate, [Cu3(HO3PCH2)2N–CH2C6H4CH2–N(CH2PO3H)2)(H2O)4] n (1) was hydrothermally synthesized from the reaction of Cu(NO3)2 and (H2O3PCH2)2N–CH2C6H4CH2–N(CH2PO3H2)2, (H8L). Compound 1 was structurally characterized by means of X-ray single crystal diffraction. The structure of 1 showed a 3D structure constructed from two types of Cu(II) and chelating and bridging modes of (HO3PCH2)2N–CH2C6H4CH2–N(CH2PO3H)2, and features a (44.610.8) topological network. The 3D compound is further stabilized by hydrogen bonds. UV–Vis diffuse reflectance and infrared spectroscopy as well as elemental analysis of compound 1 are also presented.  相似文献   

12.
1 INTRODUCTION During the past decade, a series of organic-inor- ganic hybrid compounds based on metal halide units have been prepared and studied[1]. The combination of organic and inorganic components at the mole- cular level affords us the opportunity to design new hybrid materials and modulate the properties of components[2]. As a result, some interesting proper- ties, such as non-linear optical[3], interesting magne- tic[4], efficient luminescence[2], ideal thermal and mechanical sta…  相似文献   

13.
14.
The title compound has been synthesized by the reaction of HgI2 and [(CH3)3- NCH2CH2N(CH3)3]I2 with pH = 7.5 at room temperature, and its crystal structure was determined by single-crystal X-ray diffraction analysis. The title compound crystallizes in monoclinic system, space group P21/c with a = 8.3075(8), b =15.8084(19), c =15.390(2)(°A), β = 95.192(4)o, V = 2012.9(4)(°A)3, Z = 2, Dc = 2.824 g/cm3, F(000) = 1502, C14H39N4O2Hg2I8, Mr = 1711.87, μ(MoKα) = 13.768 mm-1, the final R = 0.0465 and wR = 0.1293 for 3046 observed reflections with I > 2(I). The title compound consists of cations ([C8H22N2]2+) and anion (HgI42-), which are combined by static attracting forces to form the so-called organic-inorganic hybrid material.  相似文献   

15.
16.
This paper characterizes the integrated activity of fresh and used catalysts on the selective catalytic reduction of NOx using CH4. The synthesised K–Ag/Al2O3 catalysts exhibited a promotional effect on deNOx activity in the presence of SO2. In addition, 130 h of time-on-stream reactions demonstrated the thermal and mechanical stability of the synthesised materials. A TEM analysis and diffraction patterns demonstrated the sintering of finely dispersed particles to ~0.5 micron size clusters by sulphation. Furthermore, under reaction conditions, the de-sulphation initiated the re-dispersion of the Ag clusters to different sized particles. The TPD studied demonstrated the strong adsorption sites for methane and formation of R–SOx compounds. This surface modification in the SO2 feed stream is considered to be the reason for the promotional effect on the deNOx reaction.  相似文献   

17.
《Chemical physics letters》2002,350(5-6):623-627
The ground states and binding energies of Eu3+–L (L=H2O,H2S,NH2CH3,S(CH3)2, imidazole) complexes has been determined using ab initio techniques. The binding is mostly electrostatic as expected. The empty f orbital is different for the S compounds, being a π-like orbital, while for the O and N containing ligands it is a σ-like orbital. However, the range in the binding energies for the different f holes is small.  相似文献   

18.
The hydrothermal reaction of MoO3, V, Na2WO4· 2H2O, [N(CH2CH2)3N](1,4-diazabicyclo[2.2.2] octane), and H2O at 160°C for 90h gave dark-brown crystals of [HN(CH2CH2)3N]2[HMoVMoVI 5O19]·[N(CH2CH2)3N], (1), in 40% yield. Complex (1) is the first one-electron reduced mixed-valence hexamolybdate to be crystallized and structurally characterized. The crystal structure of (1) consists of discrete [HMoVMoVI 5O19]2– anions, [HN-(CH2CH2)3N]+ cations, and neutral [N(CH2CH2)3N] molecules of crystallization.  相似文献   

19.
20.
The mode selectivity of the H+CH3D→H2+CH2D reaction was studied using a recently developed ten-dimensional time-dependent wave packet method.The reac-tion dynam...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号