首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three 1-(2-nitrophenyl)ethyl-caged phospho-amino acids have been synthesized for use in standard N(alpha)-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis (SPPS). The most common naturally occurring phospho-amino acids, serine, threonine, and tyrosine, were prepared as protected caged building blocks by modification with a unique phosphitylating reagent. In previous work, caged phospho-peptides were made using an interassembly approach (Rothman, D. M.; Vazquez, M. E.; Vogel, E. M.; Imperiali, B. Org. Lett. 2002, 4, 2865-2868). However, this technique is limited to creating peptides without oxidation sensitive residues C-terminal to the amino acid to be modified and the methodology involves synthetic manipulations on the solid phase that may limit the utilization of the methodology. Herein we report the facile synthesis of N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-serine 1, N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-threonine 2, and N-alpha-Fmoc-phospho(1-nitrophenylethyl-2-cyanoethyl)-L-tyrosine 3. These building blocks allow the synthesis of any caged phospho-peptide sequence using standard Fmoc-based SPPS procedures.  相似文献   

2.
Alpha melanocyte stimulating hormone (alpha-MSH) is a widely distributed hormone. This tridecapeptide exhibits various biological activities mediated through different receptors. alpha-MSH binds to the melanocortin-1 receptor (MC1-R), mainly expressed in keratinocytes and melanocytes, inducing melanogenesis and anti-inflammatory processes. The central His-Phe-Arg-Trp tetrapeptide sequence of alpha-MSH is known to form a turn in the bioactive conformation. To find new potent analogs of alpha-MSH, we decided to introduce non-peptide building blocks in the alpha-MSH sequence. Molecular modeling studies showed that two amino acids of the central core sequence could be replaced by the benzodiazepinone building block without loosing the beta-turn conformation. Benzodiazepines are well-known pharmacophores exhibiting a wide scope of biological activities and are described as constrained dipeptide mimics templates. Although numerous synthetic pathways leading to benzodiazepinones have been described in literature, no methodology has 1,4-benzodiazepine-2,5-diones building blocks bearing a free carboxylic acid function and a protected amino function suitable for incorporation into peptide sequences. In this study, we report the synthesis of peptides with a benzodiazepinone moiety obtained directly during the course of solid-phase peptide synthesis (SPPS). This "on-line" strategy leads to the generation of a 54-member pseudo-peptide library of alpha-MSH analogs. After LC/MS purification, binding assays were performed on the MC1 receptor leading to the discovery of several micromolar ligands.  相似文献   

3.
D Takahashi  T Yano  T Fukui 《Organic letters》2012,14(17):4514-4517
An efficient method for the synthesis of peptides bearing an amide at the C-terminal is described. This method involves the attachment of a C-terminal protecting group bearing long aliphatic chains, followed by the repetition of simple reaction and precipitation steps with the combined advantages of liquid-phase peptide synthesis (LPPS) and solid-phase peptide synthesis (SPPS). Using this method, a hydrophobic peptide was successfully synthesized in good yield and high purity, which cannot be obtained satisfactorily by SPPS.  相似文献   

4.
A straightforward method for the solid-supported synthesis of cryptand-like bicyclic peptides (1-5) on a backbone amide linker has been described. For the branching, two novel easily available building blocks, viz. N-(4-methoxytrityl)-N-(2-nitrobenzenesulfonyl)-protected N,N-bis(2-aminoethyl)-beta-alanine (6) and N-(9-fluorenylmethoxycarbonyl) protected iminodiacetic acid monoallyl ester (7), have been employed. The key steps of the synthesis are as follows: (i) stepwise coupling of one amino acid and 6 to the secondary amino group of the linker; (ii) removal of the 2-nitrobenzenesulfonyl group and SPPS by the Fmoc chemistry, using 7 as the penultimate and tert-butoxycarbonyl (Boc) protected glycine as the last amino acid; (iii) removal of the 4-methoxytrityl protection and subsequent SPPS by the Fmoc chemistry; (iv) removal of the allyl and Fmoc groups, followed by cyclization; and (v) removal of the Boc and tert-butyl groups, followed by cyclization. Final cleavage from the support and removal of benzyl-derived protecting groups gives the desired bicyclic products.  相似文献   

5.
Despite the great advances in solid-phase peptide synthesis (SPPS), the incorporation of certain functional groups into peptide sequences is restricted by the compatibility of the building blocks with conditions used during SPPS. In particular, the introduction of highly reactive groups used in modern bioorthogonal reactions into peptides remains elusive. Here, we present an optimized synthetic protocol enabling installation of two strained dienophiles, trans-cyclooctene (TCO) and bicyclononyne (BCN), into different peptide sequences. The two groups enable fast and modular post-synthetic functionalization of peptides, as we demonstrate in preparation of peptide-peptide and peptide-drug conjugates. Due to the excellent biocompatibility, the click-functionalization of the peptides can be performed directly in live cells. We further show that the introduction of both clickable groups into peptides enables construction of smart, multifunctional probes that can streamline complex chemical biology experiments such as visualization and pull-down of metabolically labeled glycoconjugates. The presented strategy will find utility in construction of peptides for diverse applications, where high reactivity, efficiency and biocompatibility of the modification step is critical.  相似文献   

6.
The growing interest in synthetic peptides has prompted the development of viable methods for their sustainable production. Currently, large amounts of toxic solvents are required for peptide assembly from protected building blocks, and switching to water as a reaction medium remains a major hurdle in peptide chemistry. We report an aqueous solid‐phase peptide synthesis strategy that is based on a water‐compatible 2,7‐disulfo‐9‐fluorenylmethoxycarbonyl (Smoc) protecting group. This approach enables peptide assembly under aqueous conditions, real‐time monitoring of building block coupling, and efficient postsynthetic purification. The procedure for the synthesis of all natural and several non‐natural Smoc‐protected amino acids is described, as well as the assembly of 22 peptide sequences and the fundamental issues of SPPS, including the protecting group strategy, coupling and cleavage efficiency, stability under aqueous conditions, and crucial side reactions.  相似文献   

7.
A new methodology for the solid-phase synthesis of peptide-based phosphine ligands has been developed. Solid supported peptide scaffolds possessing either primary or secondary amines were synthesised using commercially available Fmoc-protected amino acids and readily available Fmoc-protected amino aldehydes for reductive alkylation, in standard solid-phase peptide synthesis (SPPS). Phosphine moieties were introduced by phosphinomethylation of the free amines as the final solid-phase synthetic step, immediately prior to complexation with palladium(II), thus avoiding tedious protection/deprotection of the phosphine moieties during the synthesis of the ligands. The extensive use of commercial building blocks and standard SPPS makes this methodology well suited for the generation of solid-phase combinatorial libraries of novel ligands. Furthermore, it is possible to generate several different phosphine ligand libraries for every peptide scaffold library synthesised, by functionalising the scaffold libraries with different phosphine moieties. The synthesised ligands were characterised on solid support by conventional (31)P NMR spectroscopy and, cleaved from the support, as their phosphine oxides by HPLC, (1)H NMR, (31)P NMR and high resolution ESMS. Palladium(II) allyl complexes were generated from the resin bound ligands and to demonstrate their catalytic properties, palladium catalysed asymmetric allylic substitution reactions were performed. Good yields and moderate enantioselectivity was obtained for the selected combination of catalysts and substrate, but most importantly the concept of this new methodology was proven. Screening of ligand libraries should afford more selective catalysts.  相似文献   

8.
A novel SUcrose-Based Polymer support (SUBPOL) with tailored morphology suitable for the use in solid-phase peptide synthesis (SPPS) is described, and its application as a hydrophilic affinity matrix for the specific removal of fibrinogen from human plasma is demonstrated. After suspension polymerization of partly methacrylated 2,1':4,6-di-O-isopropylidene sucrose and subsequent removal of the protecting groups, hydrophilic spherical polymer beads were obtained. The morphology of the resulting resin was controlled by variation of the porogen as well as the average degree of substitution with respect to the methacryloyl groups of the monomer mixture. After introduction of amino groups for a permanent attachment of immobilized peptide ligands, prevention of unintended esterification during SPPS was achieved by silylation of remaining hydroxy groups. Alternatively, a Rink amide linker was introduced prior to SPPS to allow cleavage and subsequent analysis of the peptide assembled on the SUBPOL resins. Two hexapeptides of sequence kwiivw and hffflw, consisting of d-amino acids, as well as a 19-mer peptide corresponding to the sequence GSGVRGDFGSLAPRVARQL of the VP1 protein from the foot-and-mouse disease virus (FMDV) were successfully prepared both manually or in a semi-automated process on SUBPOL resins according to the Fmoc/tBu strategy. Yields and purities were comparable to peptides prepared on commercially available polystyrene resins. A specific affinity adsorbent containing the fibrinogen-binding pentapeptide GPRPK was prepared by SPPS on SUBPOL resins of different morphology, and the strong impact of the affinity matrix on adsorption performance was demonstrated.  相似文献   

9.
Use of N-protected-α-amino acid bromides for facile solid-phase synthesis of peptides (SPPS) containing extremely sterically hindered non-proteinogenic amino acids is presented. Amino acid bromides (Aaa-Br), generated in situ, were used for the synthesis of long chain homopeptides containing up to eight successive α-MeVal or Aib residues. SPPS of a heteropeptide containing a very bulky amino acid building block is also described. The choice of suitable N-protections is discussed.  相似文献   

10.
The development of an improved methodology for iterative solid-phase synthesis of para- and meta-arylopeptoids (oligomeric N-substituted aminomethyl benzamides) using benzoyl chloride building blocks is described. This methodology has enabled the synthesis of arylopeptoids with tert-butyl and phenyl side chains, which allows for complete control over the amide conformation: the tert-butyl results in a 100% cis amide conformation while the phenyl side chain results in a 100% trans amide conformation. The method has furthermore enabled the first synthesis and preliminary conformational studies of arylopeptoids bearing (S)-N-(1-phenylethyl) side chains.  相似文献   

11.
The synthesis of a sulfonamide-based transition-state (TS) analogue of enzymatic phosphohistidine dephosphorylation as an amino acid building block is presented, together with the proof-of-concept of its incorporation into peptides. Key features include final global acidolytic protective group removal as well as full compatibility with standard Fmoc solid-phase peptide synthesis (SPPS). The peptides are designed as inhibitors of phosphohistidine phosphatase and as a pull-down probe for identification of phosphohistidine phosphatases, respectively.  相似文献   

12.
Solid-phase peptide synthesis (SPPS) is a widely used technique in biology and chemistry. However, the synthesis yield in SPPS often drops drastically for longer amino acid sequences, presumably because of the occurrence of incomplete coupling reactions. The underlying cause for this problem is hypothesized to be a sequence-dependent propensity to form secondary structures through protein aggregation. However, few methods are available to study the site-specific structure of proteins or long peptides that are anchored to the solid support used in SPPS. This study presents a novel solid-state NMR (SSNMR) approach to examine protein structure in the course of SPPS. As a useful benchmark, we describe the site-specific SSNMR structural characterization of the 40-residue Alzheimer's β-amyloid (Aβ) peptide during SPPS. Our 2D (13)C/(13)C correlation SSNMR data on Aβ(1-40) bound to a resin support demonstrated that Aβ underwent excessive misfolding into a highly ordered β-strand structure across the entire amino acid sequence during SPPS. This approach is likely to be applicable to a wide range of peptides/proteins bound to the solid support that are synthesized through SPPS.  相似文献   

13.
Wang W  Huang Y  Liu J  Xie Y  Zhao R  Xiong S  Liu G  Chen Y  Ma H 《Lab on a chip》2011,11(5):929-935
A novel integrated continuous-flow microfluidic system was designed and fabricated for solid phase peptide synthesis (SPPS) using conventional reactants. The microfluidic system was composed of a glass-based radial reaction chip, a diffluent chip, amino acid feeding reservoirs and continuous-flow reagent pathways. A tri-row cofferdam-fence structure was designed for solid phase supports trapping. Highly cross-linked, porous and high-loading 4-(hydroxymethyl)phenoxymethyl polystyrene (HMP) beads were prepared for microfluidic SPPS. The transfer losses, hazardous handling and time-consuming processes in traditional peptide cleavage steps were avoided by being replaced with the on-chip cleavage treatment. Six peptides from an antibody affinity peptide library against β-endorphin with different lengths and sequences were obtained simultaneously on the constructed continuous-flow microfluidic system within a short time. This microfluidic system is automatic, integrated, effective, low-cost, recyclable and environment-friendly for not only SPPS but also other solid phase chemical syntheses.  相似文献   

14.
β‐Amino acid incorporation has emerged as a promising approach to enhance the stability of parent peptides and to improve their biological activity. Owing to the lack of reliable access to β2,2‐amino acids in a setting suitable for peptide synthesis, most contemporary research efforts focus on the use of β3‐ and certain β2,3‐amino acids. Herein, we report the catalytic asymmetric synthesis of β2,2‐amino acids and their incorporation into peptides by Fmoc‐based solid‐phase peptide synthesis (Fmoc‐SPPS). A quaternary carbon center was constructed by the palladium‐catalyzed decarboxylative allylation of 4‐substituted isoxazolidin‐5‐ones. The N?O bond in the products not only acts as a traceless protecting group for β‐amino acids but also undergoes amide formation with α‐ketoacids derived from Fmoc‐protected α‐amino acids, thus providing expeditious access to α‐β2,2‐dipeptides ready for Fmoc‐SPPS.  相似文献   

15.
Considering our interest in the use of peptides as potential target-specific drugs or as delivery vectors of metallodrugs for various biomedical applications, it is crucial to explore improved synthetic methodologies to accomplish the highest peptide crude purity in the shortest time possible. Therefore, we compared “classical” fluorenylmethoxycarbonyl (Fmoc)-solid phase peptide synthesis (SPPS) with ultrasound(US)-assisted SPPS based on the preparation of three peptides, namely the fibroblast growth factor receptor 3(FGFR3)-specific peptide Pep1 (VSPPLTLGQLLS-NH2) and the novel peptides Pep2 (RQMATADEA-NH2) and Pep3 (AAVALLPAVLLALLAPRQMATADEA-NH2), which are being developed aimed at interfering with the intracellular protein-protein interaction(PPI) RANK-TRAF6. Our results demonstrated that US-assisted SPPS led to a 14-fold (Pep1) and 4-fold time reduction (Pep2) in peptide assembly compared to the “classical” method. Interestingly, US-assisted SPPS yielded Pep1 in higher purity (82%) than the “classical” SPPS (73%). The significant time reduction combined with high crude peptide purity attained prompted use to apply US-assisted SPPS to the large peptide Pep3, which displays a high number of hydrophobic amino acids and homooligo-sequences. Remarkably, the synthesis of this 25-mer peptide was attained during a “working day” (347 min) in moderate purity (approx. 49%). In conclusion, we have reinforced the importance of using US-SPPS towards facilitating the production of peptides in shorter time with increased efficacy in moderate to high crude purity. This is of special importance for long peptides such as the case of Pep3.  相似文献   

16.
Solid-phase synthesis of fullerene-peptides   总被引:1,自引:0,他引:1  
The solid-phase synthesis of peptides (SPPS) containing [60]fullerene-functionalized amino acids is reported. A new amino acid, fulleropyrrolidino-glutamic acid (Fgu), is used for the SPPS of a series of analogues of different length based on the natural Leu(5)-Enkephalin and on cationic antimicrobial peptides. These fullero-peptides were prepared on different solid supports to analyze the influence of the resin on the synthesis. Optimized protocols for the coupling and deprotection procedures were determined allowing the synthesis of highly pure peptides in sufficient quantities for evaluation of biological activities. In particular, to avoid side reactions of the fullerene moiety with bases and nucleophiles, the removal of the protecting groups was performed under inert conditions (nitrogen or argon in the dark). We have encountered serious problems with the recovery of the crude compounds, especially when Fgu was inserted in the proximity of the resin core as fullero-peptides tend to remain embedded inside the resin. Eventually, all of the fullero-peptides were easily purified, and the cationic peptides were tested for their antimicrobial activities. They displayed a specific activity against the Gram-positive bacterium S. aureus and also lysed erythrocytes. The availability of a fullero-amino acid easily useable in the SPPS of fullero-peptides may thus open the way to the synthesis of new types of biologically active oligomers.  相似文献   

17.
To develop solid-phase synthesis of phosphinic peptides, different FmocXaaPsi{PO(OAd)CH(2)}XaaOH building blocks have been prepared, where Fmoc is (fluorenylmethoxy)carbonyl. In this respect, the protection of the hydroxyphosphinyl function in these phosphinic dipeptides by the adamantyl group turns out to be convenient. The phosphinic adamantyl esters are completely stable in basic conditions and can be removed under relatively mild acidic conditions. Using these building blocks, despite the bulkiness of the adamantyl group, no particular problem of coupling was observed during the solid-phase synthesis of phosphinic peptides by the Fmoc strategy. The developed methodology is of particular interest to facilitate the development of potent inhibitors of zinc-metalloproteases.  相似文献   

18.
A new flexible and efficient methodology for the solid-phase synthesis of lipidated peptides has been developed. The approach is based on the use of previously synthesized building blocks and overcomes the limitations of previously reported methods, since long doubly lipidated peptides can be synthesized by using this route. Furthermore, it was thus possible to prepare a large number of N- and H-Ras peptides bearing a wide range of reporter and/or linking groups--efficient tools for the investigation of biological processes. In terms of efficiency and flexibility this solid-phase method is superior to the solution-phase synthesis. It gives pure peptides in multimilligram amounts within a much shorter time and with superior overall yield.  相似文献   

19.
An amine-derivatized DOTA has been used to modify the surface of a polymeric support for conventional solid phase peptide synthesis (SPPS) following standard Fmoc chemistry methods. This methodology was used to synthesize a peptide-DOTA conjugate that was demonstrated to be a PARACEST MRI contrast agent. Therefore, this synthesis methodology can facilitate Fmoc SPPS of molecular imaging contrast agents.  相似文献   

20.
Unwanted trifluoroacetylation occurred at the N-terminus of prolinyl peptides during detachment from the solid phase. This was observed when the N-α-Fmoc protecting group had been removed prior to the final TFA treatment. Subtly changing the SPPS protocol and incorporating Boc- in place of the Fmoc-protected proline as the N-terminal building block efficiently suppressed this side reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号