首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Recent progress in fundamental studies on multiporphyrin arrays has provided structural parameters for the molecular design of artificial light-harvesting antennae which mimic the wheel-like antenna complexes of photosynthetic purple bacteria. Covalent and noncovalent approaches have been employed for the construction of artificial light-harvesting multiporphyrin arrays. Such arrays are categorized into ring-shaped, windmill-shaped, star-shaped, and dendritic architectures. In particular, dendritic multiporphyrin arrays have been proven to be promising candidates for both providing a large absorption cross-section and enabling the vectorial transfer of energy over a long distance to a designated point. Such molecular and supramolecular systems are also expected to be potent components for molecular electronics and photonic devices.  相似文献   

2.
Room temperature near-IR phosphorescence of naphthalenediimide (NDI) was observed with N^N Pt(II) bisacetylide complex (Pt-NDI) in which the NDI was connected to Pt(II) center via acetylide. Pt-NDI shows intense absorption of visible light and long-lived NDI-localized excited state ((3)IL) (τ(T) = 22.3 μs). Pt-NDI was used as a triplet sensitizer for upconversion.  相似文献   

3.
Visible light-harvesting cyclometalated Ir(iii) complexes with 3-(2-benzothiazoly)-7-diethylaminocoumarin as the C^N cyclometalation ligands were prepared. The ancillary N^N ligand is either 6-piperidine naphthalimide-phenanthroline (Ir-1) or 9-aminophenanthroline (Ir-3). Ir(ppy)(2)(Phen) was prepared as model complex (Ir-2). Ir-1 and Ir-3 show strong absorption of visible light (ε = 109?000 M(-1) cm(-1) or 112?000 M(-1) cm(-1) at 486 or 484 nm, respectively). All the complexes show room temperature phosphorescence with drastically different phosphorescence quantum yields (Φ(P) = 4.3%, 44.3% and 46.0% for Ir-1, Ir-2 and Ir-3, respectively). With steady state and time-resolved spectra, as well as DFT calculations, the T(1) excited states of Ir-1 and Ir-3 were proposed to be the (3)IL state, whereas the (3)MLCT state was proposed for Ir-2. Long-lived emissive triplet excited states (7.6 μs and 54.5 μs) were observed for Ir-1 and Ir-3, compared to the short T(1) excited state lifetime of Ir-2 (1.2 μs). The complexes were used as triplet photosensitizers for triplet-triplet annihilation upconversion and upconversion quantum yields (Φ(UC)) of 19.3% and 12.7% were observed for Ir-1 and Ir-3, respectively. No upconversion was observed for Ir-2 under the same experimental conditions.  相似文献   

4.
针对荧光分子检测普遍灵敏度低和检测范围窄的问题,制备了具有等离子激元共振特性的重掺杂半导体纳米结构Cu2-xS和典型的稀土掺杂上转换发光纳米颗粒NaYF4:Yb,Er,通过三相界面自组装方法获得了Cu2-xS/NaYF4:Yb,Er薄膜基底。结合有限元模拟,计算了不同摆放情况下Cu2-xS周围的局域电场分布,研究了在实际薄膜中Cu2-xS纳米盘之间产生的等离激元耦合对上转换发光性能以及对拉曼信号增强的影响。结果表明,Cu2-xS等离激元层与NaYF4:Yb,Er发光层的耦合,不仅得到了上转换3个数量级的提高,还实现了分子检测10-7 mol·L-1的检测极限,并且获得了10-3~10-7 mol·L-1的宽线性响应,从而达到高灵敏度的定性和定量双功能的精确检测。  相似文献   

5.
针对荧光分子检测普遍灵敏度低和检测范围窄的问题,制备了具有等离子激元共振特性的重掺杂半导体纳米结构Cu2-xS和典型的稀土掺杂上转换发光纳米颗粒NaYF4∶Yb,Er,通过三相界面自组装方法获得了Cu2-xS/NaYF4∶Yb,Er薄膜基底。结合有限元模拟,计算了不同摆放情况下Cu2-xS周围的局域电场分布,研究了在实际薄膜中Cu2-xS纳米盘之间产生的等离激元耦合对上转换发光性能以及对拉曼信号增强的影响。结果表明,Cu2-xS等离激元层与NaYF4∶Yb,Er发光层的耦合,不仅得到了上转换 3个数量级的提高,还实现了分子检测 10-7 mol·L-1的检测极限,并且获得了 10-3~10-7 mol·L-1的宽线性响应,从而达到高灵敏度的定性和定量双功能的精确检测。  相似文献   

6.
The excitation-energy-hopping (EEH) times within two-dimensional cyclic zinc(II)-porphyrin arrays 5 and 6, which were prepared by intermolecular coordination and ring-closing metathesis reaction of olefins, were deduced by modeling the EEH process based on the anisotropy depolarization as well as the exciton-exciton annihilation dynamics. Assuming the number of energy-hopping sites N = 5 and 6, the two different experimental observables, that is, anisotropy depolarization and exciton-excition annihilation times, consistently give the EEH times of 8.0 +/- 0.5 and 5.3 +/- 0.6 ps through the 1,3-phenylene linkages of 5 and 6, respectively. Accordingly, the self-assembled cyclic porphyrin arrays have proven to be well-defined two-dimensional models for natural light-harvesting complexes.  相似文献   

7.
The anodic electropolymerization of thiophene‐functionalized cyclometalated ruthenium(II) complexes is shown for the first time. Oxidative decomposition reactions can be overcome by modification of the involved redox potentials through the introduction of electron‐withdrawing substituents, namely nitro groups, at the cyclometalating phenyl ring. The generated functionalized ruthenium(II) complexes allow the electrochemical preparation of thin polymer films, which show a broad UV/Vis absorption as well as reversible redox switchability. The presented complexes are promising candidates for future photovoltaic applications based on photo‐redox‐active films.  相似文献   

8.
Ruthenium(II) Phthalocyanines: Preparation and Properties of Di(halo)phthalocyaninatoruthenate(II) [Ru(Py)2Pc2?] reacts with molten (nBu4N)X forming stable, green (nBu4N)2[Ru(X)2Pc2?] (X = Cl, Br). The cyclovoltammogram shows a quasireversible redoxprocess for the metal oxidation at E1/2(I) = ?0.02 V (X = Cl) resp. 0.05 V (X = Br) and for the first ringoxidation at E1/2(II) = 0.70 V. The typical π-π*-transitions (B < Q < N) of the phthalocyanine dianion (Pc2?) are observed in the uv-vis spectrum. With respect to RuIII phthalocyanines B is shifted significantly to higher, Q, N to lower energy. The strong extra-band at 24.2 kK is diagnostic for these RuII phthalocyanines. The vibrational spectra are typical for the Pc2? ligand with D4h symmetry, too, and bands at 513, 909, 1 171 und 1 329 cm?1 in the m.i.r. spectrum are specific for hexa-coordinated low spin RuII. In the Raman spectrum with excitation at ~480 nm the intensity of the totally symmetrical Ru? X stretching vibration at 266 cm?1 (X = Cl) resp. 168 cm?1 (X = Br) together with a progression of up to three overtones is selectively resonance Raman enhanced. The asymmetrical Ru? X stretching vibration is observed in the f.i.r. spectrum at 272 cm?1 (X = Cl) resp. 215 cm?1 (X = Br).  相似文献   

9.
10.
Since the first facile synthesis of [Ru(H2O)6](tos)2 was published at the beginning of the eighties, several RuII aqueous inorganic and organometallic complexes were described, showing the increasing interest in this kind of compound due to potential applications in catalysis and medicine. To understand what governs the reactivity of the ligands in the first coordination sphere of the RuII center, we discuss its solution behavior, starting with the simplest aqueous species [Ru(H2O)6]2+ and moving progressively in complexity with selected examples. In addition, we present variable‐pressure measurements with two objectives: to determine activation volumes for mechanistic assignments, and to shift equilibria by increasing the solubility of gaseous molecules.  相似文献   

11.
The review discusses various models of multiporphyrin arrays with ethyne, diyne, and E- and Z-enediyne linkers. The concept implying multivalence of such systems is considered. Porphyrin-ethynyl arrays are nanosize structures that are promising from the viewpoint of their application in up-to-date fields of medicine and technics, including design of biocomputers.  相似文献   

12.
The Ru(IV) and Os(II) complexes (PhO)2RuTPP and OsTPP were synthesized from tetraphenylporphine (H2TPP) and K2RuO4 or K2OsO4 (taken in the molar ratio of 1 : 30) in boiling phenol. The kinetics of oxidation reactions of these complexes in solutions of HOAc (acetic), H2SO4, and HOAc–H2SO4 acids was studied. It was found that in the aerated HOAc–H2SO4 mixture heated above 340 K, these complexes are oxidized with participation of different reaction sites: the Ru(IV) complex is oxidized at macrocycle to give the -radical-cation (PhO)2RuPP+, while in the Os(II) complex, the metal atom is oxidized to form the Os(III) complex. In the first case, the reaction follows the activation mechanism, whereas in the second case, the activation energy of the reaction is zero.  相似文献   

13.
Two novel water soluble ruthenium(II) complexes [Ru(bpy)(2)(bqbg)](2+) and [Ru(phen)(2)(bqbg)](2+) have been structurally characterized and their DNA condensation activity, cytotoxicity, and cellular uptake studies of DNA condensates as potential non-viral DNA carriers were evaluated.  相似文献   

14.
Ru(II) sulfoxide-maltolato complexes, Ru(ma)(2)(L)(2) (L = DMSO (1a) and TMSO (1b) or L(2) = BESE (1c)), were synthesized, as well as the analogous ethylmaltolato derivatives, Ru(etma)(2)(L)(2) (2a-c) (ma = 3-hydroxy-2-methylpyran-4-onate, etma = 2-ethyl-3-hydroxypyran-4-onate, TMSO = tetramethylene sulfoxide, BESE = 1,2-bis(ethylsulfinyl)ethane). A Ru(II) bidentate sulfoxide-metronidazole complex, RuCl(2)(BESE)(metro)(2) (3), was also synthesized (metro = metronidazole = 2-methyl-5-nitroimidazole-1-ethanol). The complexes were characterized generally by (1)H NMR, UV-vis, and IR spectroscopies, as well as MS, elemental analysis, solution conductivity, and cyclic voltammetry. The molecular structures of Ru(ma)(2)(S,R-BESE) (1c) and trans-RuCl(2)(R,R-BESE)(metro)(2) (3) were determined by X-ray crystallography. All sulfoxide ligands are S-bonded. The complexes were tested against human breast cancer cells (MDA-MB-435S) using an in vitro MTT assay, a colorimetric determination of cell viability: 2a,b exhibit the lowest IC(50) values of 190 +/- 10 and 220 +/- 10 microM, respectively. Cisplatin exhibits an IC(50) value of 30 +/- 5 microM.  相似文献   

15.
N-mesityl-N′-pyridyl-imidazolium chloride 1a and the corresponding bromide salt 1b have been deprotonated with NaH in THF giving the free N-heterocyclic carbene N-mesityl-N′-pyridyl-imidazolin-2-ylidene 2 in 80% yield (starting from 1a). Imidazolium salt 1a reacts with RuCl3 · xH2O to give a racemic mixture of dinuclear di-μ-chloro bridged ruthenium complexes [(κ2-2)2Ru(μ-Cl)2Ru(κ2-2)2]2+ [3a]2+. The carbene carbon atoms as well as the halides are arranged in cis-positions to each other whereas the nitrogen atoms adopt a trans-configuration. The di-μ-bromo bridged derivative [(κ2-2)2Ru(μ-Br)2Ru(κ2-2)2]2+ [3b]2+ was obtained from RuCl3 · xH2O and 1b. The bridging halide ligands can be removed by the reaction with silver or sodium salts of bidentate Lewis acids. Complex [3a]2+ reacts with silver pyridylcarboxylate to give a racemic mixture of the mononuclear complex [4]+. Reaction of [3a]2+ with the sodium salt of l-proline resulted in a diastereomeric mixture of complexes [5]+. The free N-heterocyclic carbene 2 reacts with [FeCl2(PPh3)2] to give after anion exchange with NaBPh4 cis/cis/trans coordinated [Fe(κ2-2)2(MeCN)2](BPh4)2 [6](BPh4)2. The molecular structures of [3b](PF6)2, [4]PF6 and [6](BPh4)2 · H2O are reported.  相似文献   

16.
Novel polymerised bicontinuous microemulsions can provide unique microenvironments for some functional molecules of scientific interests and practical applications.  相似文献   

17.
He L  Chan PW  Tsui WM  Yu WY  Che CM 《Organic letters》2004,6(14):2405-2408
[reaction: see text] Ruthenium(II) porphyrin-catalyzed amidation of aromatic heterocycles with iminoiodanes under mild conditions (CH(2)Cl(2), 4 A molecular sieves, ultrasound, 40 degrees C) was achieved in moderate to good yields (up to 84%) and conversions (up to 99%). Only the N,N-ditosylamidated product was obtained for reactions involving heteroarenes, where X = O, S, or NTs. N-Alkyl- and N-aryl-substituted pyrroles, on the other hand, were shown to give the 3,4-diaminated adduct.  相似文献   

18.
Tris-chelate complex [Ru(Pap)(RAaiR′)2](ClO4)2 (I, II, III/a, b, c) (where RAaiR′ = 1-alkyl-(2-arylazo)imidazole, R = H, Me, Cl (a, b, c); R′ = Me, Et, CH2Ph (I, II, III), and Pap = phenylazopyridine) was prepared by silver assisted synthetic route. IR spectra of the complexes support Ru-azo nitrogen π-bonding interaction. 1H NMR spectra suggest that there are two types of streochemical orientation of RAaiR′ around ruthenium(II). Cyclic voltammetry of the complexes shows one metal oxidation Ru(II)/Ru(III) at 1.4–1.5 V and three successive ligand reduction couples at the negative side of the reference potential in the range from −0.5 to −0.56, −0.7 to −0.8, and from −1.25 to −1.40 V, respectively. The text was submitted by the author in English.  相似文献   

19.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

20.
《Comptes Rendus Chimie》2003,6(8-10):883-893
Dendrimers based on Ru(II) and Os(II) polypyridine complexes as building blocks and 2,3–dpp (2,3–dpp = 2,3–bis(2′–pyridyl)pyrazine) as bridging ligands are presented and their properties as light-harvesting antenna systems are illustrated. The dendrimers exhibit a huge absorption in the visible region and energy migration patterns whose direction and efficiency depend on the synthetically determined topography of the systems. New recent developments are also discussed, with particular regard towards ultrafast energy transfer processes and long-range electron transfer within the dendritic arrays. To cite this article: S. Serroni et al., C. R. Chimie 6 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号