首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
Phase equilibria in the three-component systems LiBr-LiVO3-Li2MoO4 and LiBr-Li2SO4-Li2MoO4 have been studied using differential thermal analysis (DTA). Eutectic compositions have been determined (mol %): in the system LiBr-LiVO3-Li2MoO4, 56.0 LiBr, 22.0 LiVO3, and 22.0 Li2MoO4 with a melting temperature of 413°C; and in the system LiBr-Li2SO4-Li2MoO4, 65.0 LiBr, 14.0 Li2SO4, and 21.0 Li2MoO4 with a melting temperature of 421°C. Phase fields have been demarcated.  相似文献   

2.
Ce2O3-K2O-P2O5 ternary system has been investigated by thermoanalytical methods (DTA, DSC), powder X-ray diffraction, XPS and IR spectroscopy. The existence of three double potassium-cerium(III) phosphates has been confirmed and a new binary phosphate K4Ce2P4O15 has been found. Phase diagram and isothermal section at room temperature of the system Ce2O3-K2O-P2O5 have been presented.  相似文献   

3.
Summary The synthesis of new compounds based on the CeO2-PrO2-Nd2O3system, which can be used as pigments for colouring of ceramic glazes, is investigated in our laboratory. The optimum conditions for the syntheses of these compounds have been estimated. The methods of thermal analysis provided first information about the temperature region of the formation of the pigments investigated. The synthesis of these compounds was followed by thermal analysis using STA 449/C Jupiter (Netzsch, Germany).  相似文献   

4.
Phase relations in the MgO-Bi2O3-B2O3 system have been investigated by X-ray powder diffraction analysis and DTA. No ternary compounds have been found in the system. Quasi-binary sections have been the 600°C determined and isothermal section of the system has been constructed.  相似文献   

5.
Phase equilibria in the LiF-LiCl-LiVO3-Li2SO4-Li2MoO4 system have been studied by differential thermal analysis. The eutectic composition has been determined as follows (mol %): LiF, 17.4; LiCl, 42.0; LiVO3, 17.4; Li2SO4, 11.6; and Li2MoO4, 11.6, with the melting temperature equal to 363°C and the enthalpy of melting equal to (284 ± 7) kJ/kg.  相似文献   

6.
Phase equilibria in the Sb2Te3-Gd2Te3-Bi2Te3 ternary system have been studied using differential thermal analysis, namely, X-ray powder diffraction, microstructure examination, thermodynamic analysis, and microhardness and alloy density measurements. Phase diagrams of some polythermal joins and liquidus surface have been constructed. The regions of primary crystallization of phases and the coordinates of all invariant and univariant equilibria in the system under investigation have been established.  相似文献   

7.
The four-component system LiF-K2WO4-CaF2-BaWO4 has been studied for the first time using physicochemical methods. The a priori prediction of the phase complex revealed the phase tree and crystallization path of the system. The prediction was verified experimentally, by construction of a topologic model of the phase diagram, and the solution of the equations of the general law of liquidus-surface formation. The density has been measured, and the heat-storage properties of eutectic mixtures have been estimated.  相似文献   

8.
In the Li2O-Ta2O5-TeO2 system, the boundaries of the glass region have been determined. The electrical and spectral properties of glasses and crystalline materials have been investigated.  相似文献   

9.
The quasi-ternary system Tl2Se-AgTlSe-TlBiSe (A) has been investigated by DTA, X-ray powder diffraction, microstructural analysis, and microhardness measurements. Polythermal sections AgTlSe-TlBiSe2, AgTlSe-Tl9BiSe6, [Ag0.5Tl1.5Se]-TlBiSe2, Tl2Se-AgBiSe2 (0–50 mol % AgBiSe2), an isothermal section at 500 K, and the projection of the liquidus surface of system A have been constructed. It has been shown that the quasi-binary join AgTlSe-Tl9BiSe6 divides system A into two subordinate triangles, namely, Tl2Se-Tl9BiSe6-AgTlSe (B) and AgTlSe-Tl9BiSe6-TlBiSe2 (C). The phase diagram of subsystem B involves a univariant eutectic equilibrium while subsystem C involves an invariant eutectic equilibrium. The ternary eutectic has the coordinates 650 K, 10 mol % TlBiSe2, and 61 mol % AgTlSe. A continuous series of solid solutions (0–12 mol % AgTlSe) has been found along the Tl2Se-Tl9BiSe6 bordering system. The homogeneity region of TlBiSe2 extends to 5 mol %.  相似文献   

10.
Nonhygroscopic, colored glasses have been synthesized in the CuNbOF5-BaF2 and CuNbOF5-PbF2 systems proceeding from crystals of the complex compound CuNbOF5 · 4H2O. The glasses have been studied structurally and thermally. The crystallization resistance of the glasses has been studied as a function of glass composition. Lead difluoride glasses are more stable than barium difluoride glasses of the same composition. These glasses have lower glass-transition temperatures than the binary glasses formed in the NbO2F-BaF2 system. The glass structure is built of Nb(O,F)6 polyhedra, which are linked in glass networks through oxygen bridges. Modifier cations influence both the structure of glass networks and the linkage of polyhedra.  相似文献   

11.
Hydrogen gas as a clear energy resource was found to be largely bubbled from a H2O/H2O2/MnWO4 system. MnWO4 powder was fabricated by an aqueous reaction method. The powder was characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectrometry (XPS). The efficiency of the hydrogen generation increases with an increase in initial pH in the appropriate range, H2O2 proportion, MnWO4 proportion, and intensity of light resource. Calcining at 400 °C for 1 h can make the MnWO4 powder synthesized by an aqueous reaction more effective for H2 generation and more stable in higher initial pH. The MnWO4 catalyst shows a long-term stability for photocatalytic H2 generation. A mechanism was suggested for the hydrogen generation from the H2O/H2O2/MnWO4 system together with XPS analysis.  相似文献   

12.
This is the first study of the NaBO2-Na2CO3-Na2MoO4-Na2WO4 quaternary system by differential thermal analysis. Na2[MoO4(x)WO4(1 − x)] solid solutions in the quaternary system are found to not decompose.  相似文献   

13.
The solid-phase interaction in the V2O5-Nb2O5-MoO3 system has been investigated, and the formation of a solid solution bounded by the compositions MoNb2V4O18 ? δ, Mo2NbV5O21 ? δ, Mo2Nb3V3O21 ? δ, and Mo4Nb9V9O57 ? δ has been found (δ is nonstoichiometry). In the V2O5?Nb2O5 system, the formation of three compounds is verified, namely, VNbO5 (tetragonal structure), VNb9O25, and V2Nb23O62.5. The first two compounds are isostructural and form a continuous solid solution with tetragonal symmetry. A new compound of the composition Mo3NbVO14 ? δ has been synthesized. This compound is isostructural to the Mo3Nb2O14 compound described in the literature and forms a tetragonal solid solution with it. The phase equilibria in the V2O5-Nb2O5-MoO3 system in the subsolidus region have been determined.  相似文献   

14.
Phase equilibria in the La2S3-Bi2S3-La2O3 ternary system were studied by differential thermal, X-ray powder diffraction, and microstructure analyses. Phase diagrams of five vertical sections and a liquidus surface projection were plotted for the La2S3-Bi2S3-La2O3 system. The regions of primary crystallization of phases and coordinates of non- and monovariant equilibria were determined for the system.  相似文献   

15.
The La2S3-Ga2S3-EuS system has been investigated along the 3Ga2S3-EuLaGa3S7 join by physicochemical methods (DTA, X-ray powder diffraction, microstructural analysis). is a quasi-binary eutectic-type section of the ternary system. Solubility on the base of both components has been revealed in the system. Solubility at room temperature is 3 mol % EuLaGa3S7 on the Ga2S3 side 1.5 mol % Ga2S3 and on the base of the EuLaGa3S7 compound. The coordinates of the eutectic point are 80 mol% EuLaGa3S7 and 1020 K.  相似文献   

16.
The phase diagrams, isotherms of the electrical conductivity, Raman spectra, and time correlation functions of vibrational dephasing are studied for the LiN(CF3SO2)2-(CH3)2SO2 system, which is promising for use as an electrolyte in medium-temperature lithium-ion batteries. The phase diagram of this system contains a broad supercooled region. It is shown that the concentration dependences of the electrical conductivity are typical for solutions of strong electrolytes. The Raman spectra and the time correlation functions of vibrational dephasing for the anion and the solvent indicate that in the supercooling range, cations are weakly solvated by solvent molecules and form ion pairs.  相似文献   

17.
Phase equilibria in the LiF-LiBr-LiVO3 and LiBr-Li2SO4-LiVO3 systems have been investigated by differential thermal analysis. Eutectic compositions have been revealed (mol %). In the LiF-LiBr-LiVO3 system, 16.8% LiF, 52.0% LiBr, 31.2% LiVO3 with a melting point of 428°C; in the LiBr-Li2SO4-LiVO3 system, 52.0% LiBr, 38.0% LiVO3, 10.0% Li2SO4 with a melting point of 444°C. Crystallization fields of the phases have been demarcated.  相似文献   

18.
The phase diagrams of the systems KF-K2TaF7 and KF-Ta2O5 were determined using the thermal analysis method. The phase diagrams were described by suitable thermodynamic model. In the system KF-K2TaF7 eutectic points at x KF=0.716 and t=725.4°C and at x KF=0.214 and t=712.2°C has been calculated. It was suggested that K2TaF7 melts incongruently at around 743°C forming two immiscible liquids. The system KF-Ta2O5 have been measured up to 8 mol% of Ta2O5. The eutectic point was estimated to be at x KF∼0.9 and t∼816°C. The formation of KTaO3 and K3TaO2F4 compounds has been observed in the solidified samples.  相似文献   

19.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

20.
The subsolidus region of the Li2O-MgO-B2O3 system has been studied by X-ray powder diffraction and differential thermal analysis. Isothermal sections at 500–550 and 650–700°C have been designed. The following complex borates have been found to form: at 500–550°C, Li2MgB2O5 and LiMgBO3 are formed; at 650–700°C, a new phase Li4MgB2O5 is formed along with LiMgBO3; and at 5500–600°, Li2MgB2O5 is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号