首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of 2,3-diarylcyclopent-2-en-1-ones with m-chloroperoxybenzoic acid gave new thermally stable sulfone derivatives of photochromic diarylethenes. The spectral properties of the compounds obtained (the wavelengths of the maxima of the absorption bands of their initial and cyclic forms, the quantum yields of photocyclization and photobleaching reactions) as well as their thermal stability and fatigue resistance were examined. The relationship between the structures of the synthesized compounds and their photochromic properties was determined. The energy differences between the ground-state molecules of the starting and photoinduced isomers of 2,3-diarylcyclopent-2-en-1-ones were calculated by the DFT/B3LYP1 method with the 6-31G(d) basis set. The calculated energy differences can be used to predict and explain such spectral characteristics of photochromic diarylethenes as the thermal stability of photoinduced isomers and the quantum yields of cycloreversion reactions.  相似文献   

2.
Two novel Cu(II) complexes with 1,2-bis(2′-methyl-5′-(2″-pyridyl)-3′-thienyl)perfluorocyclopentene (BM-2-PTP) or its closed-form (closed-BM-2-PTP) were synthesized and characterized by X-ray crystallographic analysis. Both complexes are tetra-coordinated to two N atoms from distinct ligands and two Cl atoms from anions, forming 1-D polymeric structures. [Cu(BM-2-PTP)Cl2] (1) showed typical spectral changes as analogous Ag(I) complexes with the same ligand upon appropriate light stimulus. However, closed-BM-2-PTP displayed different photocyclization from its open-ring form upon irradiation with UV light, indicating the photogenerated closed form turned into two kinds of closed-ring isomers. Furthermore, [Cu(closed-BM-2-PTP)Cl2] (2) was revealed to contain two conformers by X-ray crystallographic analysis and displayed similarities in photocyclization to its free ligand. The distinct absorptions of the UV spectrum were attributed to the coexistence of two conformers in complex 2, both of which showed effective photoreactivities in the crystalline phase. The photochromic mechanism of complex 2 is tentatively concluded as two conformers displaying independent photoreactions.  相似文献   

3.
A 1,2-bis(2-methylbenzothiophene-3-yl)maleimide model ( DAE) and two dyads in which this photochromic unit is coupled, via a direct nitrogen-carbon bond ( Ru-DAE) or through an intervening methylene group ( Ru-CH 2-DAE ), to a ruthenium polypyridine chromophore have been synthesized. The photochemistry and photophysics of these systems have been thoroughly characterized in acetonitrile by a combination of stationary and time-resolved (nano- and femtosecond) spectroscopic methods. The diarylethene model DAE undergoes photocyclization by excitation at 448 nm, with 35% photoconversion at stationary state. The quantum yield increases from 0.22 to 0.33 upon deaeration. Photochemical cycloreversion (quantum yield, 0.51) can be carried out to completion upon excitation at lambda > 500 nm. Photocyclization takes place both from the excited singlet state (S 1), as an ultrafast (ca. 0.5 ps) process, and from the triplet state (T 1) in the microsecond time scale. In Ru-DAE and Ru-CH 2-DAE dyads, efficient photocyclization following light absorption by the ruthenium chromophore occurs with oxygen-sensitive quantum yield (0.44 and 0.22, in deaerated and aerated solution, respectively). The photoconversion efficiency is almost unitary (90%), much higher than for the photochromic DAE alone. Efficient quenching of both Ru-based MLCT phosphorescence and DAE fluorescence is observed. A complete kinetic characterization has been obtained by ps-ns time-resolved spectroscopy. Besides prompt photocyclization (0.5 ps), fast singlet energy transfer takes place from the excited diarylethene to the Ru(II) chromophore (30 ps in Ru-DAE, 150 ps in Ru-CH 2-DAE ). In the Ru(II) chromophore, prompt intersystem crossing to the MLCT triplet state is followed by triplet energy transfer to the diarylethene (1.5 ns in Ru-DAE, 40 ns in Ru-CH 2-DAE ). The triplet state of the diarylethene moiety undergoes cyclization in a microsecond time scale. The experimental results are complemented with a combined ab initio and DFT computational study whereby the potential energy surfaces (PES) for ground state (S 0) and lowest triplet state (T 1) of the diarylethene are investigated along the reaction coordinate for photocyclization/cycloreversion. At the DFT level of theory, the transition-state structures on S 0 and T 1 are similar and lean, along the reaction coordinate, toward the closed-ring form. At the transition-state geometry, the S 0 and T 1 PES are almost degenerate. Whereas on S 0 a large barrier (ca. 45 kcal mol (-1)) separates the open- and closed-ring minima, on T 1 the barriers to isomerization are modest, cyclization barrier (ca. 8 kcal mol (-1)) being smaller than cycloreversion barrier (ca. 14 kcal mol (-1)). These features account for the efficient sensitized photocyclization and inefficient sensitized cycloreversion observed with Ru-DAE. Triplet cyclization is viewed as a nonadiabatic process originating on T 1 at open-ring geometry, proceeding via intersystem crossing at transition-state geometry, and completing on S 0 at closed-ring geometry. A computational study of the prototypical model 1,2-bis(3-thienyl)ethene is used to benchmark DFT results against ab initio CASSCF//CASPT2 results and to demonstrate the generality of the main topological features of the S 0 and T 1 PES obtained for DAE. Altogether, the results provide strong experimental evidence and theoretical rationale for the triplet pathway in the photocyclization of photochromic diarylethenes.  相似文献   

4.
P-pyrrole phosphines (R2Ppyr), in which a pyrrole group is directly bonded to the phosphorus atom, act as monodentate k-P ligands towards gold(I) center to afford either neutral or cationic mononuclear complexes as well as neutral dinuclear complexes. All of these new gold(I) complexes have been structurally characterized and their first uses in catalysis have demonstrated their effectiveness as precatalysts for the enyne cycloisomerization reactions.  相似文献   

5.
The potential for reductive elimination of fluorine from dinuclear gold(II) for catalysis has prompted our efforts to synthesize a dinuclear gold(II) fluoride complex. This has been achieved with bis(2,6-dimethylphenyl)formamidinate bridging ligands. In order to obtain this product, it was necessary first to synthesize the corresponding dinuclear gold(II) nitrate, which reacts readily with KF in a metathesis reaction. The nitrate complex and fluoride complexes have been structurally characterized. The Au-Au distance in the dinuclear fluoride, 2.595 ?, is longer than the distance found in the analogous chloride complex, 2.567 ?. This result is consistent with the presence of a fluoride "π electron effect" on the filled Au 5d orbitals. The Raman spectrum shows an Au-Au stretch at 206 cm(-1), which agrees with Woodruff's rules and the density functional theory computational model used for modeling the complex.  相似文献   

6.
A diarylethene dimer linked by a phenyl group was synthesized and the photochromic behavior was examined. Upon irradiation with ultraviolet light (λ=313 nm), a hexane solution of the diarylethene dimer (1a) turned purple blue. Upon further prolonged irradiation the color changed to blue. The purple-blue and blue colors are due to the formation of a dimer having one open- and one closed-ring forms (1b) and a dimer having two closed-ring forms (1c), respectively. Both 1b and 1c returned to 1a by irradiation with visible light (λ>500 nm). The photochromic reactivity was evaluated by measuring quantum yields of the photocyclization and photocycloreversion reactions. The photocyclization quantum yield was 0.50. The cycloreversion quantum yield from 1c to 1b (0.0026) was lower than that from 1b to 1a (0.0094).  相似文献   

7.
Efficient photocyclization from a low-lying triplet state is reported for a photochromic dithienylperfluorocyclopentene with Ru(bpy)3 units attached via a phenylene linker to the thiophene rings. The ring-closure reaction in the nanosecond domain is sensitized by the metal complexes. Upon photoexcitation into the lowest Ru-to-bpy 1MLCT state followed by intersystem crossing to emitting 3MLCT states, photoreactive 3IL states are populated by an efficient energy-transfer process. The involvement of these 3IL states explains the quantum yield of the photocyclization, which is independent of the excitation wavelength but decreases strongly in the presence of dioxygen. This behavior differs substantially from the photocyclization of the nonemissive dithienylperfluorocyclopentene free ligand, which occurs from the lowest 1IL state on a picosecond time scale and is insensitive to oxygen quenching. Cyclic voltammetric studies have also been performed to gain further insight into the energetics of the system. The very high photocyclization quantum yields, far above 0.5 in both cases, are ascribed to the strong steric repulsion between the bulky substituents on the dithienylperfluorocyclopentene bridge bearing the chelating bipyridine sites or the Ru(bpy)3 moieties, forcing the system to adopt nearly exclusively the reactive antiparallel conformation. In contrast, replacement of both Ru(II) centers by Os(II) completely prevents the photocyclization reaction upon light excitation into the low-lying Os-to-bpy 1MLCT state. The photoreaction can only be triggered by optical population of the higher lying 1IL excited state of the central photochromic unit, but its yield is low due to efficient energy transfer to the luminescent lowest 3MLCT state.  相似文献   

8.
A series of novel benzo[b]phosphole alkynylgold(I) complexes has been demonstrated to display photochromic and mechanochromic properties upon applying the respective stimuli of light and mechanical force. Promising multistimuli‐responsive properties of this series of gold(I) complexes have been successfully achieved through judicious molecular design, which involves incorporation of the photochromic dithienylethene‐containing benzo[b]phosphole into the triphenylamine‐containing arylethynyl ligand that is susceptible to mechanical force‐induced color changes via gold(I) complexation. With excellent thermal irreversibility and robust fatigue resistance of this series of gold(I) complexes, multicolor states controlled by the photochromism and mechanochromism have been realized. Repeatable photochromic and mechanochromic cycles without apparent loss of reactivity have also been observed under ambient conditions. The present work provides important insight and an alternative strategy for the molecular design of multistimuli‐responsive materials, paving the way for further development of the underexplored photoresponsive gold(I) complexes and the multistate photocontrolled system.  相似文献   

9.
The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.  相似文献   

10.
The reaction of the sterically crowded dinuclear gold(I) amidinate complex Au2(2,6-Me2Ph-form)2, 1, with the less bulky bidentate nitrogen ligands results in the formation of tetranuclear gold(I) complexes. When the less bulky amidinate, K(4-MePh-form), A, was reacted with 1 in a 1:1 stoichiometric ratio, crystals containing equal amounts of the tetranuclear and dinuclear gold(I) aryl formamidinates, Au4(4-MePh-form)4 and Au2(2,6-Me2Ph-form)2, where 2,6-Me2Ph-form = B, were found in the same unit cell, 2 x 2THF: space group P, a = 10.794(11) A, b = 14.392(15) A, c = 25.75(3) A, alpha = 82.564(17) degrees, beta = 85.443(18) degrees, gamma = 82.614(19) degrees. The reaction of K(4-MePh-form), A, and 1 in a 1:2 ratio (excess) produced the tetranuclear complex only, 3. The potassium salt of the exchanged bulky ligand, K(2,6-Me2Ph-form), formed as a byproduct. The reaction of the dinuclear gold(I) complex Au2(2,6-Me2Ph-form)2 with the 3,5-diphenylpyrazolate salt, K(3,5-Ph2pz), resulted in the formation of two tetranuclear mixed-ligand complexes, Au4(3,5-Ph2pz)2(2,6-Me2Ph-form)2 x 2THF, 4 x 2THF (space group P21/c, a = 11.5747(19) A, b = 25.497(4) A, c = 21.221(3) A, beta = 96.979(3) degrees) and Au4(3,5-Ph2pz)3(2,6-Me2Ph-form) x THF, 5 x THF (space group P21/c, a = 23.058(5) A, b = 14.314(3) A, c = 18.528(4) A, beta = 90.94(3) degrees. The block crystals from the tetranuclear complex, 4 x 2THF, contain mixed ligands with each pyrazolate ring facing an amidinate ring. The tetranuclear mixed ligand complex, 5 x THF, was isolated as needles with ligands alternating above and below the Au4 plane. The two tetranuclear mixed-ligand complexes emit at 490 and 530 nm, respectively, under UV excitation.  相似文献   

11.
The structures of the trinuclear gold(I), [Au(3)(2,6-Me(2)-form)(2)-(THT)Cl], the dinuclear [Au(2)(2,6-Me(2)-form)(2)], and the oxidative-addition product [Au(2)(2,6-Me(2)-form)(2)Cl(2)] formamidinate complexes are reported. The trinuclear complex is stable with gold-gold distances 3.01 and 3.55 A. The gold-gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 A, similar to observations made with the dithiolates and ylides.  相似文献   

12.
A series of di(gold(I) aryls), L(AuR)(2) (L = DPEphos, DBFphos, or Xantphos; R = 1-naphthyl, 2-naphthyl, 9-phenanthryl, or 1-pyrenyl), have been prepared. The complexes were characterized by multinuclear NMR spectroscopy, static and time-dependent optical spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. In addition, DFT calculations on model dinuclear gold complexes have been used to examine the electronic structures. Photophysical properties of the dinuclear complexes have been compared to mononuclear analogues. Low-temperature excited-state lifetimes for both the mononuclear and dinuclear complexes in toluene indicate triplet-state emission. Time-resolved DFT calculations suggest that emission originates from aryl-ligand transitions, even if the LUMO resides elsewhere.  相似文献   

13.
The use of alkynyl gold(I) complexes covers different research fields, such as bioinorganic chemistry, catalysis, and material science, considering the luminescent properties of the complexes. Regarding this last application, we report here the synthesis of three novel dinuclear gold(I) complexes of the general formula [(diNHC)(Au-C≡CPh)2]: two Au-C≡CPh units are connected by a bridging di(N-heterocyclic carbene) ligand, which should favor the establishment of semi-supported aurophilic interactions. The complexes can be easily synthesized through mechanochemistry upon reacting the pristine dibromido complexes [(diNHC)(AuBr)2] with phenylacetylene and KOH. Interestingly, we were also able to isolate the monosubstituted complex [(diNHC)(Au-C≡CPh)(AuBr)]. The gold(I) species were fully characterized by multinuclear NMR spectroscopy and mass spectrometry. The emission properties were also evaluated, and the salient data are comparable to those of analogous compounds reported in the literature.  相似文献   

14.
Reaction of [[Rh(mu-Cl)(CO)2]2] with the triazene ArNNNHAr (Ar = o-CO2MeC6H4) produced the mononuclear complex [RhCl(ArNNNHAr)(CO)2] (1). Complex 1 reacted with KOH in methanol to give the dinuclear compound [[Rh(mu-ArNNNAr)(CO)2]2] (2), which showed a "mu-(1kappaN1,2kappaN3)-ArNNNAr" coordination mode for both bridging ligands. The dinuclear complex [[Rh(mu-ArNNNAr)(CO)2]2] (2) easily undergoes redistribution reactions in which the eight-membered "Rh2(NNN)2" core is broken. Thus, reaction of 2 with the anionic complex (NHEt3)[RhCl2(CO)2] gave the single-bridged complex (NHEt3)[Rh2(mu-ArNNNAr)Cl2(CO)4] (4), while the trinuclear complexes [Rh3(mu-ArNNNAr)(mu-Cl)(mu-CO)Cl(CO)4] (5) and [Rh3(mu-ArNNNAr)2(mu-Cl)(mu-CO)(CO)3] (6) were isolated by addition of the neutral compound [[Rh(mu-Cl)(CO)2]2] to 2, depending on the molar ratio employed. The formation of 5 and 6 involved the loss of carbonyl groups and the coordination of the oxygen atoms of the CO2Me groups. The structures of 4, 5, and 6 have been determined by X-ray diffraction methods, which show the ability of bis(o-carboxymethylphenyl)triazenide to act as bi-, tri-, and tetra-dentate ligand-spanning dinuclear moieties in trinuclear complexes.  相似文献   

15.
Complexes of the type [Au2(micro-PP3)2]X2 [X=Cl (), Br (), I ()], [Ag2(micro-PP3)2](NO3)2 (), Ag(PP3)Cl (), M3(micro-PP3)X3 [M=Au, X=Cl (), Br (), I (); M=Ag, X=NO3 ()] and Au4(micro-PP3)X4 [X=Cl (), Br (), I ()] have been prepared by interaction between gold(I) or silver(I) salts and the ligand tris[2-(diphenylphosphino)ethyl]phosphine (PP3) in the appropriate molar ratio. Microanalysis, mass spectrometry, IR and NMR spectroscopies and conductivity measurements were used for characterization. and are ionic dinuclear species containing four-coordinate gold(i) and four/three coordinate silver(i), respectively. Solutions of behave as mixtures of complexes in a 2:1 [Au2(micro-PP3)X2; X=Cl(), Br(), I()] and 4:1 () metal to ligand ratio. and react with free PP(3) in solution to generate the ionic compounds and , respectively. Complexes and , with four linear PAuX fragments per molecule, were shown by X-ray diffraction to consist of dimeric aggregates via close intermolecular gold(I)gold(I) contacts of 3.270 A () and 3.184 A (). The resultant octanuclear systems have an inversion center with two symmetry-related gold(I) atoms being totally out of the aurophilic area and represent a new form of aggregation compared to that found in other halo complexes of gold(I) containing polyphosphines. The luminescence properties of the ligand and complexes, in the solid state, have been studied. Most of the gold systems display intense luminescent emission at room and low temperature. The influence of the halogen on the aurophilic contacts of compounds with a 4:1 metal to ligand ratio results in different photophysical properties, while and are luminescent complex is nonemissive. The luminescence increases with increasing the phosphine/metal ratio affording for complexes , without aurophilic contacts, the stronger emissions. Silver complexes and are nonemissive at room temperature and show weaker emissions than gold(I) species at 77 K.  相似文献   

16.
In comparison to mononuclear gold Lewis acid catalysts, digold complexes and dual-gold catalysis have illustrated a distinct and powerful potential for the activation of carbon-carbon multiple bonds. Herein, this concept is pushed further by designing novel tetranuclear gold(I) dicationic complexes structurally supported by strongly stabilizing constraint diphosphinoferrocenyl ligands and attractive closed-shell Au⋅⋅⋅Au aurophilic interactions. The use of a molecularly-defined tetranuclear dicationic aurophilic gold(I) precatalyst for the selectivity-challenging cycloisomerization of low-substituted 1,6-enynes favors the formation with high selectivity of strained azabicyclo[4.1.0]hept-4-enes – even in the complete absence of activating/orienting substituents on alkyne and olefin reactive functions. This selectivity is not achieved by the reported phosphine- and carbene-stabilized mono- and dinuclear cationic gold(I) complexes, including the ones formed from the same ligands. More importantly this selectivity differs also from nanoparticles and heterogeneous gold catalysts reported to date. DFT studies correlated to experimental mechanistic investigations support an unprecedented “cluster-like” reactivity from polynuclear cooperation at the origin of this peculiar selectivity where the aurophilic interactions preexist, and pre-organize, gold cluster reactive intermediates.  相似文献   

17.
The dinuclear gold(I) amidinate complex [Au(2)(Me(2)-form)(2)], 1, (Me(2)-form = 2,6-Me(2)-formamidinate) reacts with Hg(CN)(2) to form a 2D structure, 1.2Hg(CN)(2).2THF. Each gold center interacts with two Hg(CN)(2) molecules. The Au...Au distance increases from 2.7 Angstroms in the starting dinuclear complex to 2.9 Angstroms in the adduct. The gold centers are connected to four nitrogen atoms with Au-N distances in the range 2.13-2.51 Angstroms. The cyanide stretch is shifted from 2192 cm(-1) in the Hg(CN)(2) to 2147 cm(-1) in the adduct.  相似文献   

18.
The coordination chemistry of a series of di- and tri-nucleating ligands with Ag(I), Hg(I) and Hg(II) has been investigated. Most of the ligands contain two or three N,N'-bidentate chelating pyrazolyl-pyridine units pendant from a central aromatic spacer; one contains three binding sites (2 + 3 + 2-dentate) in a linear sequence. A series of thirteen complexes has been structurally characterised displaying a wide range of structural types. Bis-bidentate bridging ligands react with Ag(I) to give complexes in which Ag(I) is four-coordinate from two bidentate donors, but the complexes can take the form of one-dimensional coordination polymers, or dinuclear complexes (mesocate or helicate). A tris-bidentate triangular ligand forms a complicated two-dimensional coordination network with Ag(I) in which Ag...Ag contacts, as well as metal-ligand coordination bonds, play a significant role. Three dinuclear Hg(I) complexes were isolated which contain an {Hg2}2+ metal-metal bonded core bound to a single bis-bidentate ligand which can span both metal ions. Also characterised were a series of Hg(II) complexes comprising a simple mononuclear four-coordinate Hg(II) complex, a tetrahedral Hg(II)4 cage which incorporates a counter-ion in its central cavity, a trinuclear double helicate, and a trinuclear catenated structure in which two long ligands have spontaneously formed interlocked metallomacrocyclic rings thanks to cyclometallation of two of the Hg(II) centres.  相似文献   

19.
Various reagents such as Cl2, Br2, I2, benzoyl peroxide and CH3I add to the dinuclear gold(I) amidinate complex [Au2(2,6-Me2Ph-form)2] to form oxidative-addition gold(II) metal–metal bonded complexes. The gold–gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 Å, similar to observations made with dithiolate and ylide ligands. The sodium salt of the guanidinate Hhpp ligand, Hhpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine reacts with (THT)AuCl in THF or CH2Cl2 to form a Au(II) complex, [Au2(hpp)2Cl2], either by solvent oxidation or disproportionation of the Au(I) to Au(II) and the metal. Density functional theory (DFT) and MP2 calculations on [Au2(hpp)2Cl2] find that the highest occupied molecular orbital (HOMO) is predominately hpp and chlorine-based with some Au–Au δ* character. The lowest unoccupied molecular orbital (LUMO) has metal-to-ligand (M–L) and metal-to-metal (M–M) σ* character (approximately 50% hpp/chlorine, and 50% gold). The charge-transfer character of the deeply colored solutions is observed in all the oxidative-addition products of the dinuclear gold(II) nitrogen ligands. This contrasts with the colors of the gold(II) ylide oxidative-addition products which are pale yellow. The colors of the crystalline gold(II) nitrogen complexes are dark orange to brown. This review will focus on the chemistry of gold(II) with nitrogen ligands and compare this with the well reviewed chemistry of gold(II) thiolate and ylide complexes.  相似文献   

20.
Luminescence properties and their photoinduced control of the electric dipole transitions of a Eu(III) complex that has photochromic triangle terarylenes ligands, tris(hexafluoroacetylacetonato)bis[4,5-bis(5-methyl-2-phenylthiazol-4-yl)-2-phenylthiazole]europium(III) (Eu(hfa)3(THIA)2), were studied. Fairly high photochromic reactivity of the ligand between the open-ring and closed-ring forms were found to be maintained even in the complex, and reversible color change could be observed many times. The photocyclization and the cycloreversion quantum yields of the Eu(hfa)3(THIA)2 were found to be 37% and 3.4%, respectively. The thermal stability of the closed-ring form of THIA ligand is significantly improved in the Eu(III) complex. The (5)D0-(7)F2 transition intensity of the Eu(III) complex with open-ring form ligands (Eu(hfa)3(THIA)2-O) is larger than that of the Eu(III) complex with closed-ring form ligands (Eu(hfa)3(THIA)2-C). The radiative rate constants of Eu(hfa)3(THIA)2-O and Eu(hfa)3(THIA)2-C are estimated to be 1.7 x 10(2) and 1.5 x 10(2) s(-1), respectively. The reversible control of the emission properties of the Eu(III) complex by the photochromic reactions is demonstrated for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号