首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dynamic secondary ion mass spectrometry (D-SIMS) analysis of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) was conducted using a quadrupole mass analyzer with various combinations of continuous C(60)(+) and Ar(+) ion sputtering. Individually, the Ar(+) beam failed to generate fragments above m/z 200, and the C(60)(+) beam generated molecular fragments of m/z ~1000. By combining the two beams, the auxiliary Ar(+) beam, which is proposed to suppress carbon deposition due to C(60)(+) bombardment and/or remove graphitized polymer, the sputtering range of the C(60)(+) beam is extended. Another advantage of this technique is that the high sputtering rate and associated high molecular ion intensity of the C(60)(+) beam generate adequate high-mass fragments that mask the damage from the Ar(+) beam. As a result, fragments at m/z ~900 can be clearly observed. As a depth-profiling tool, the single C(60)(+) beam cannot reach a steady state for either PET or PMMA at high ion fluence, and the intensity of the molecular fragments produced by the beam decreases with increasing C(60)(+) fluence. As a result, the single C(60)(+) beam is suitable for profiling surface layers with limited thickness. With C(60)(+)-Ar(+) co-sputtering, although the initial drop in intensity is more significant than with single C(60)(+) ionization because of the damage introduced by the auxiliary Ar(+), the intensity levels indicate that a more steady-state process can be achieved. In addition, the secondary ion intensity at high fluence is higher with co-sputtering. As a result, the sputtered depth is enhanced with co-sputtering and the technique is suitable for profiling thick layers. Furthermore, co-sputtering yields a smoother surface than single C(60)(+) sputtering.  相似文献   

2.
Alternating layers of two different organic materials, Irganox1010 and Irganox3114, have been created using vapor deposition. The layers of Irganox3114 were very thin ( approximately 2.5 nm) in comparison to the layers of Irganox1010 ( approximately 55 or approximately 90 nm) to create an organic equivalent of the inorganic 'delta-layers' commonly employed as reference materials in dynamic secondary ion mass spectrometry. Both materials have identical sputtering yields, and we show that organic delta layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling. We demonstrate, using a C(60) ion source, that the sputtering yield, S, diminishes with ion dose and that the depth resolution also degrades. By comparison with atomic force microscopy data for films of pure Irganox1010, we show that the degradation in depth resolution is caused by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Fragments characteristic of highly damaged material have intensity proportional to S, and those fragments with minimal molecular rearrangment exhibit intensities proportional to S(2). We demonstrate quantitative analysis of the amount of substance in buried layers of a few nanometer thickness with an accuracy of approximately 10%. Organic delta layers are valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.  相似文献   

3.
We demonstrate depth profiling of polymer materials by using large argon (Ar) cluster ion beams. In general, depth profiling with secondary ion mass spectrometry (SIMS) presents serious problems in organic materials, because the primary keV atomic ion beams often damage them and the molecular ion yields decrease with increasing incident ion fluence. Recently, we have found reduced damage of organic materials during sputtering with large gas cluster ions, and reported on the unique secondary ion emission of organic materials. Secondary ions from the polymer films were measured with a linear type time‐of‐flight (TOF) technique; the films were also etched with large Ar cluster ion beams. The mean cluster size of the primary ion beams was Ar700 and incident energy was 5.5 keV. Although the primary ion fluence exceeded the static SIMS limit, the molecular ion intensities from the polymer films remained constant, indicating that irradiation with large Ar cluster ion beams rarely leads to damage accumulation on the surface of the films, and this characteristic is excellently suitable for SIMS depth profiling of organic materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The hydrogen (H)/sodium (Na) interface is of great interest in glass corrosion research. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the few techniques that can provide nanoscale H and Na imaging simultaneously. However, the optimized condition for ToF-SIMS imaging of H in glass is still unclear. In H depth profiling using ToF-SIMS, H background control is a key, in which an analysis ion beam and a sputtering ion beam work together in an interlaced mode to minimize it. Therefore, it is of great interest to determine if an auxiliary sputtering ion beam is also necessary to control H background in ToF-SIMS imaging of H. In this study, H imaging with and without auxiliary sputtering beams (Cs+, O2+, and Arn+) was compared on a corroded international simple glass (ISG). It was surprising that the H/Na interface could be directly imaged using positive ion imaging without any auxiliary sputtering ion beam under a vacuum of 2 to 3 × 10−8 mbar. The H+ background was about 5% atomic percent on the pristine ISG glass, which was significantly lower than the H concentration in the alteration layer (~15%). Moreover, positive ion imaging could show distributions of other interesting species simultaneously, providing more comprehensive information of the glass corrosion. If an auxiliary O2+ sputtering ion beam was used, the H+ background could be reduced but still higher than that in the depth profiling. Besides, this condition could cause significant loss of signal intensities due to strong surface charging.  相似文献   

5.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C60+ primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C60+ primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01–2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar+ was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C60+ bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C60+ beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C60+ sputtering. Furthermore, because C60+ is responsible for generating the molecular ions, the dosage of the auxiliary Ar+ does not significantly affect the quantification curves.  相似文献   

6.
The sputtering properties of two representative cluster ion beams in secondary ion mass spectrometry (SIMS), C(60)(+) and Au(3)(+), have been directly compared. Organic thin films consisting of trehalose and dipalmitoylphosphatidylcholine (DPPC) are employed as prototypical targets. The strategy is to make direct comparison of the response of a molecular solid to each type of the bombarding cluster by overlapping the two ion beams onto the same area of the sample surface. The ion beams alternately erode the sample while keeping the same projectile for spectral acquisition. The results from these experiments are important to further optimize the use of cluster projectiles for SIMS molecular depth profiling experiments. For example, Au(3)(+) bombardment is found to induce more chemical damage as well as Au implantation when compared with C(60)(+). Moreover, C(60)(+) is found to be able to remove the damage and the implanted Au effectively. Discussions are also presented on strategies of enhancing sensitivity for imaging applications with cluster SIMS.  相似文献   

7.
B‐doped Si multiple delta‐layers (MDL) were developed as certified reference materials (CRM) for secondary ion mass spectrometry (SIMS) depth profiling analysis. Two CRMs with different delta‐layer spacing were grown by ion beam sputter deposition (IBSD). The nominal spacing of the MDL for shallow junction analysis is 10 nm and that for high energy SIMS is 50 nm. The total thickness of the film was certified by high resolution transmission electron microscopy (HR‐TEM). The B‐doped Si MDLs can be used to evaluate SIMS depth resolution and to calibrate the depth scale. A consistency check of the calibration of stylus profilometers for measurement of sputter depth is another possible application. The crater depths measured by a stylus profilometer showed a good linear relationship with the thickness measured from SIMS profiling using the calibrated film thickness for depth scale calibration. The sputtering rate of the amorphous Si thin film grown by sputter deposition was found to be the same as that of the crystalline Si substrate, which means that the sputtering rate measured with these CRMs can be applied to a real analysis of crystalline Si. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Time of flight secondary ion mass spectrometry 2D images and molecular depth profiles of human HeLa cells treated with bromodeoxyuridine (BrdU) were acquired in the dual beam mode (Bi(3) (+) analysis beam, C(60) (+) etching beam). Several preparation protocols were investigated and were compared to a simple wash-and-dry method. The feasibility of using C(60) to clean the samples prior to imaging with Bi was also investigated quantitatively by calibrating full depth profiles of the cells using atomic force microscopy. BrdU was used as a marker for the cell nucleus, facilitating identification and localization of sub-cellular features during depth profiling. Results show that C(60) can be used to remove the surface contamination and to access different layers within the cells for 2D imaging. For a 1 nA, 10 keV C(60) (+) beam incident at 45° and rastered over a 500 × 500 μm(2) area, ~1 nm of biological material was sputtered every second. Our results show that HeLa cells were completely removed after etching with 1.3×10(15) C(60) (+) ions per cm(2), giving an average etching rate of 3.9 nm for every 10(13) C(60) per cm(2) at 10 keV and 45° incidence.  相似文献   

9.
In static secondary ion mass spectrometry (SIMS) experiments, an analysis dose of 10(12) ions/cm(2) typically produces optimum results. However, the same dose used in dual beam depth profiling can significantly degrade the signal. This is because during each analysis cycle a high-energy beam is rastered across the same x-y location on the sample. If a sufficient amount of sample is not removed during each sputter cycle, the subsequent analysis cycle will sample a volume degraded by the previous analysis cycles. The dimensionless parameter R' is used to relate the amount of damage accumulated in the sample to the amount of analysis beam dose used relative to the etching beam. Depth profiles from trehalose films spin-cast onto silicon wafers acquired using Bi(1) (+) and Bi(3) (+) analysis beams were compared. As R' increased, the depth profile and the depth resolution (interface width) both degraded. At R' values below 0.04 for both Bi(1) (+) and Bi(3) (+), the shape of the profile as well as the depth resolution (9 nm) indicated that dual beam analysis can be superior to C(60) single beam depth profiling.  相似文献   

10.
The application of ion beam sputtering in combination with glancing-incidence X-ray fluorescence spectrometry for high-resolution concentration depth profiling is presented. Two new techniques are described: first, in the “bevel-etching technique”, the sample depth profile is uncovered on the sample surface either by sputter etching with a gradient of the ion beam intensity or by varying the sputtering time by moving a shutter in front of the sample; second, in the “deposition technique”, samples are etched uniformly and the sputtered material is deposited on a moving substrate. The bevelled sample and also the material deposited on the substrate are characterized (laterally resolved) by glancing incidence X-ray fluorescence spectrometry. The apparatus and techniques are described in detail. Typical experiments showing the advantages of and problems with the two techniques are discussed. The achievable depth resolutions, 1.5 nm with the bevel-etching technique and 1.4 nm with the deposition technique, are comparable with the best results from other depth profiling methods.  相似文献   

11.
The ionization and fragmentation of C(60) fullerenes were investigated using matrix films covered with C(60) molecules and bombarded with 1.5-KeV He(+) ions. C(+), C(60)(+), and C(60)(++) ions were sputtered from the C(60) molecules that were physisorbed on Ar and Xe matrix films, whereas the sputtering of C(60) on the O(2) and C(8)F(18) matrix films induced an additional emission of ion adducts, such as (OC(60))(+) and (FC(60))(+), as well as the fragment ions, C(60-2n)(+) (n = 1-10). Very few ions were sputtered from the C(60) molecules that were adsorbed on the H(2)O matrix film and the Ni(111) substrate. The ions are thought to be created at the surface when C (C(60)) collides with the Ar, Xe, O, and F species via the electron-promotion mechanism, and the formation of quasi-molecules is manifested from the emission of the ion adducts. The fragmentation occurs during the interaction with the reactive species at the surface, and the delayed ionization/fragmentation of the internally excited C(60) molecules in the gas phase has negligible contribution in the present experiment. The matrix effect arises from the suppressed neutralization of the C(60)(+) ion because of the localization of a valence hole. The C(60)(+) ion undergoes neutralization on the H(2)O film because the hydrogen bond has some covalent character.  相似文献   

12.
Depth profiling of Ar in Ar-implanted tungsten (W) films with an excellent detection limit was investigated by secondary ion mass spectrometry (SIMS). Depth profiles of Ar with the detection of Ar+ and ArCs+ secondary ions, which were produced by O2+ and Cs+ primary ions, respectively, were compared in view of the detection limit and the depth resolution. The detection limit of Ar monitoring Ar+ was limited by the carbon- and oxygen-containing molecular ion (C2O+) in the sample as well as in the SIMS instrument. It was observed that some of the Ar+ ions were produced in the vacuum above the sample surfaces, whereas the ionization of almost all C2O+ occurred at the samples. By using different energy spectra between Ar+ and C2O+, we showed that the energy-filtering technique is advantageous for suppressing C2O+ ion detection. It is also confirmed that the ArCs+ secondary ion is only slighting by the C2OCs+ mass-interference ion. A detection limit of 4 x 10(18) cm(-3) for monitoring Ar+ and 3 x 10(16) cm(-3) for monitoring ArCs+ was achieved under a primary-ion current density of 0.16 mA/cm2. The detection of ArCs+ ion rather than Ar+ was found to be superior in the detection limit and the depth resolution. We conclude that SIMS is useful for the determination of the Ar depth distribution in W films.  相似文献   

13.
Quantitative evaluation of lubrication boundary films was investigated by time-of-flight secondary ion mass spectrometry depth profiling with low energy Cs sputtering. Relative sensitivity correction coefficient (RSC) for calcium phosphate, calcium carbonate, or calcium sulfate was determined by measuring the pellets of the mixture of these compounds. The RSCs for the three calcium salts varied with measurement conditions such as sputter energy and primary ion species. By using the RSC determined in this investigation, the depth profiles of the boundary films formed in real engine oil were corrected to quantitative profiles. The difference of structures between two lubrication boundary films on the different substrate materials formed in the same engine oil was clarified.  相似文献   

14.
The construction of an experimental apparatus, for investigation of implantation, secondary ion emission and sputtering processes, during irradiation of samples with an ion beam of up to 70 keV energy, is described. The basis of the apparatus is an electromagnetic mass separator equipped with a quadrupole mass spectrometer located in the collector chamber. The computer data acquisition control system makes it possible to perform the experimental measurements with high accuracy and precision. Preliminary results of secondary ion mass spectral measurements, obtained for C, Al, Si and Cu targets bombarded with Ar(+) and Kr(+) ions, are presented.  相似文献   

15.
利用XPS和AES研究了在Ar离子束作用下C60薄膜的分子结构的稳定性.研究发现C60分子与Ar离子束作用后,C1s结合能从284.7eV逐步下降到284.4eV,CKLL俄歇动能从270.0eV增加到271.3eV.并且C60薄膜在与氩离子束作用后,其C60分子结构特征的C1s携上峰及价带峰均消失.表明Ar离子束可以促使C60分子的C=C双键断裂,离域π键消失,C60分子分解为单质碳.C=C双键断裂过程与离子束的能量和辐照时间有一定的函数关系.  相似文献   

16.
We have performed secondary ion mass spectrometry depth profiling analysis of III–V based hetero‐structures at different target temperatures and found that both the surface segregation and surface roughness caused by ion sputtering can be radically reduced if the sample temperature is lowered to ?150 °C. The depth profiling of ‘frozen’ samples can be a good alternative to sample rotation and oxygen flooding used for ultra‐low‐energy depth profiling of compound semiconductors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The analysis of organic and biological substances by secondary-ion mass spectrometry (SIMS) has greatly benefited from the use of cluster ions as primary bombarding species. Thereby, depth profiling and three-dimensional (3D) imaging of such systems became feasible. Large Ar(n)(+) cluster ions may constitute a further improvement in this direction. To explore this option, size-selected Ar(n)(+) cluster ions with 300 ≤ n ≤ 2200 (bombarding energies 5.5 and 11 keV) were used to investigate the emission of positive secondary ions from four amino acid specimens (arginine, glycine, phenylalanine, and tyrosine) by time-of-flight SIMS. For all cluster sizes, the protonated molecule of the respective amino acid is observed in the mass spectra. With increasing cluster size the number of fragment ions decreases strongly in relation to the intact molecules, to the extent that the fraction of fragment ions amounts to less than 10% in some cases. Such 'soft' emission processes also lead the ejection of dimers and even multimers of the amino acid molecules. In the case of the phenylalanine, secondary ion species composed of up to at least seven phenylalanine moieties were observed. Tentatively, the ionization probability of the emitted molecules is envisaged to depend on the presence of free protons in the emission zone. Their number can be expected to decrease concurrently with the decreasing amount of fragmentation for large Ar(n)(+) cluster ions (i.e. for low energies per cluster atom).  相似文献   

18.
Summary Rutherford backscattering in combination with 12C(d,po) 13C nuclear reaction has been applied to understand the high wear resistance of tool steel after implantation of carbon ions. Slant deuteron incidence and glancing proton detection enables the called nuclear reaction for carbon depth profiling within a 200 nm thick near surface layer structure. Carbon ion beam assisted deposition of carbon together with carbon/substrate ion beam mixing was observed.  相似文献   

19.
The possibilities of measuring depth profiles by secondary ion mass spectrometry are evaluated. The influence of different instrumental and experimental parameters on depth resolution in the profiles are studied: the effects of primary ion beam characteristics, reactive gas adsorption and mechanical aperturing in secondary ion extraction are discussed. Beam effects are studied from the point of view of surface damage. The effects of secondary processes, such as crater edge effects, element mixing, preferential sputtering, background signals, (residual) gas contamination and ion-induced topographical and compositional changes are studied for thin metal and binary materials.  相似文献   

20.
The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on “Sputtering and Ion Emission by Cluster Ion Beams”, recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: “under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface”. It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance – for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels. © Crown copyright 2008. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号