首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
In this paper, we apply novel intrinsic analysis methods, coupled with bivariate orientation analysis, to obtain a detailed picture of the molecular-level structure of ionic liquid surfaces. We observe pronounced layering at the interface, alternating non-polar with ionic regions. The outermost regions of the surface are populated by alkyl chains, which are followed by a dense and tightly packed layer formed of oppositely charged ionic moieties. We then systematically change the cation chain length, the anion size, the temperature and the molecular model, to examine the effect of each of these parameters on the interfacial structure. Increasing the cation chain length promotes orientations in which the chain is pointing into the vapor, thus increasing the coverage of the surface with alkyl groups. Larger anions promote a disruption of the dense ionic layer, increasing the orientational freedom of cations and increasing the amount of free space. The temperature had a relatively small effect on the surface structure, while the effect of the choice of molecular model was clearly significant, particularly on the orientational preferences at the interface. Our study demonstrates the usefulness of molecular simulation methods in the design of ionic liquids to suit particular applications.  相似文献   

2.
崔慧  涂燕  尚亚卓  刘洪来 《化学通报》2017,80(7):672-678
采用离子交换法,由1-丁基-3甲基咪唑氯盐(C4mimCl)和烷基硫酸钠合成了一系列无卤素的阴离子表面活性离子液体—1-丁基-3-甲基咪唑烷基硫酸酯[C4mim][CnH2n 1SO4](n=8,12,16),利用表面张力仪、稳态荧光光谱等手段考察了表面活性离子液体在水溶液表面及体相中的聚集行为,结果表明,与传统无机反离子相比,有机咪唑阳离子[C4mim] 作为反离子的离子液体型表面活性剂具有较高的表面活性,[C4mim] 产生的氢键引起的抑制分子规则排列的作用小于其促进分子有序排列的疏水作用。长烷基链的阴离子是界面膜及胶束的主要组成成分,阴离子疏水烷基碳链的增长虽然可促进胶束的形成,但却在一定程度上抑制[C4mim] 离子参与界面或胶束的形成;阴离子所带烷基链越长,越不利于阳离子[C4mim]+参与界面膜或胶束的形成,界面膜或胶束中表面活性剂排布越松散,即界面张力越大,体系中胶束聚集数较小。  相似文献   

3.
Properties of the surface of ionic liquids, such as surface tension, ordering, and charge and density profiles, were studied using molecular simulation. Two types of modification in the molecular structure of imidazolium cations were studied: the length of the alkyl side chain and the presence of a polar hydroxyl group at the end of the side chain. Four ionic liquids were considered: 1-ethyl-3-methylimidazolium tetrafluoroborate, [C(2)C(1)im][BF(4)]; 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, [C(2)OHC(1)im][BF(4)]; 1-octyl-3-methylimidazolium tetrafluoroborate, [C(8)C(1)im][BF(4)] and 1-(8-hydroxyoctyl)-3-methylimidazolium tetrafluoroborate, [C(8)OHC(1)im][BF(4)]. The surface tension was calculated using both mechanical and thermodynamic definitions, with consistent treatment of the long-range corrections. The simulations reproduce the available experimental values of surface tension with a maximum deviation of ±10%. This energetic characterization of the interface is completed by microscopic structural analysis of orientational ordering at the interface and density profiles along the direction normal to the interface. The presence of the hydroxyl group modifies the local structure at the interface, leading to a less organized liquid phase. The results allow us to relate the surface tension to the structural ordering at the liquid-vacuum interface.  相似文献   

4.
Bulk and surface properties of the ionic liquids 1-alkyl-3-methyl-imidazolium iodides ([C(n)mim]I) were simulated by classical molecular dynamics using all atom non-polarizable force field (n = 4, butyl; 6, hexyl; 8, octyl). The structure of ionic liquids were initially optimized by density functional theory and atomic charges obtained by CHELPG method. Reduction of partial atomic charges (by 20% for simulation of density and surface tension, and by 10% for viscosity) found to improve the accuracy, while a non-polarizable force field was applied. Additionally, the simulation ensembles approach the equilibrium faster when the charge reduction is applied. By these refined force field parameters, simulated surface tensions in the range of 323-393 k are quite in agreement with the experiments. Simulation of temperature dependent surface tension of [C(4)mim]I well beyond room temperature (up to 700 K) permits prediction of the critical temperature in agreement with that predicted from experimental surface tension data. Simulated densities in the range of 298-450 K for the three ionic liquids are within 0.8% of the experimental data. Structural properties for [C(4)mim]I were found to be in agreement with the results of Car-Parrinello molecular dynamics simulation we performed, which indicates a rather well-structured cation-anion interaction and occurs essentially through the imidazolium ring cation. Diffusion coefficient changes with alkyl chain length in the order of [C(8)mim]I > [C(6)mim]I > [C(4)mim]I for the cation and the anion. Formation of a dense domain in subsurface region is quite evident, and progressively becomes denser as the alkyl chain length increases. Bivariate orientational analysis was used to determine the average orientation of molecule in ionic liquids surface, subsurface, and bulk regions. Dynamic bisector-wise and side-wise movement of the imodazolium ring cation in the surface region can be deduced from the bivariate maps. Atom-atom density profile and bivariate analysis indicate that the imidazolium cation takes a spoon like configuration in the surface region and the tilt of alkyl group is a function length of alkyl chain exposing as linear as possible to the vapor phase.  相似文献   

5.
Molecular dynamics simulations of ionic liquids [1-alkyl-3-methylimidazolium (alkyl = ethyl, butyl and hexyl), N-butylpyridinium, N-butyl-N,N,N-trimethylammonium and N-butyl-N-methylpyrrolidinium cations combined with the (CF(3)SO(2))(2)N(-) (TFSA) anion] show that the conformational flexibility of the alkyl chains in the cations is one of the important factors determining the diffusion of ions. Artificial constraint imposed on the internal rotation of alkyl chains significantly decreases the self-diffusion coefficients of cations and anions. The internal rotation of the C-N bond connecting the alkyl chain and the aromatic ring has large effects on the diffusion of ions in imidazolium and pyridinium based ionic liquids. The calculated self-diffusion coefficients of cations and anions decrease 20-40% by imposing the torsional constraint of the C-N bond. On the other hand the torsional constraint of the C-N bond does not largely change the diffusion of ions in the quaternary alkyl ammonium based ionic liquids. The conformational flexibility of the terminal C-C-C-C bond of the alkyl chains has large effects on the diffusion of ions in the quaternary alkyl ammonium based ionic liquids. The influence of the electrostatic interactions and the high density of ionic liquids on the diffusion of ions were studied. The electrostatic interactions have the paramount importance on the slow diffusion of ions in ionic liquids, while the high density of ionic liquids is also responsible for the slow diffusion. The electrostatic interactions and the high density of ionic liquids enhance the effects of the torsional constraint on the diffusion of ions, which suggests that the charge-ordering structure and small free volume originated in the strong electrostatic interactions are the causes of the significant effects of the conformational flexibility on the diffusion of ions in ionic liquids.  相似文献   

6.
Ionic liquids are possible alternative solvents for the separation of aromatic and aliphatic hydrocarbons by liquid-liquid extrac- tion. Interfacial tension is an important property to consider in the design of liquid-liquid extraction processes. In this work, the liquid-liquid interfacial tension and the mutual solubility at 25 °C have been measured for a series of biphasic, equilibrated mixtures of an ionic liquid and a hydrocarbon. In particular, the ionic liquids 1-alkyl-3-methylimidazolium bis(trifluorome- thanesulfonyl)imide (with the alkyl substituent being ethyl, hexyl or decyl), 1-ethyl-3-methylimidazolium ethylsulfate, and 1-ethyl-3-methylimidazolium methanesulfonate have been selected, as well as the hydrocarbons benzene, hexane, ethylben- zene, and octane. The selected sets of ionic liquids and hydrocarbons allow the analysis of the influence of a series of effects on the interfacial tension. For example, the interfacial tension decreases with an increase in the length of the alkyl substituent chain of the cation or with an increase of the degree of charge delocalisation in the anion of the ionic liquid. Also, the interfa- cial tension with the aromatic hydrocarbons is markedly lower than that with the aliphatic hydrocarbons. A smaller effect is caused by variation of the size of the hydrocarbon. Some of the observed trends can be explained from the mutual solubility of the hydrocarbon and the ionic liquid.  相似文献   

7.
In this study, we have examined both the effect of alkyl chain length and anion composition on the 1-alkyl-3-methylimidazolium (C(n)mim, n = 4, 6, 8, 10, and 12) structure and orientation at the room-temperature ionic liquid (RTIL)/SiO(2) interface by sum-frequency vibrational spectroscopy (SFVS). Four different anions were investigated in this study: tetrafluoroborate (BF(4)), hexafluorophosphate (PF(6)), bis(trifluoromethylsulfonyl)imide (BMSI), and bis(pentafluoroethylsulfonyl)imide (BETI). It was found that the alkyl chain in BMSI and BETI RTILs showed a decrease in gauche defects with an increase in chain length, whereas the alkyl chains of the BF(4) and PF(6) RTILs have virtually no gauche defects regardless of chain length. The tilt of the alkyl chain lies predominantly perpendicular to the surface for all the RTILs examined. A strong correlation between the HCCH vs tilt angle and alkyl chain length was observed; as the alkyl chain is lengthened the HCCH vs lies more perpendicular to the SiO(2) surface. The results of this study suggest that the length of the alkyl chain dictates to a large degree the orientation of the imidazolium cation at the surface, regardless of anion composition. To a lesser extent, the HCCH vs tilt of the imidazolium ring of the cation also appears to be correlated to the surface charge density of the SiO(2). As the SiO(2) surface charge density becomes more negative the HCCH vs tilt angle lies more parallel to the surface.  相似文献   

8.
We present molecular dynamics simulations of the air-liquid interface for three room temperature ionic liquids with a common anion: bis(trifluoromethylsulfonyl) imide ([Tf(2)N]), and imidazolium-based cations that differ in the alkyl tail length: 1-butyl-3-methylimidazolium ([C(4)mim]), 1-hexyl-3-methylimidazolium ([C(6)mim]), and 1-octyl-3-methylimidazolium ([C(8)mim]). The CHARMM type force field is used with the partial charges based on quantum calculations for isolated ion pairs. The total charge on cations and anions is around 0.9e and -0.9e, respectively, which somewhat mimics the anion to cation charge transfer and many-body effects. The surface tension at 300 K is computed using the mechanical route and its value slightly overpredicts experimental values. The air-liquid interface is analyzed using the intrinsic method of Identification of the Truly Interfacial Molecules. Structural and dynamic properties of the interfacial, sub-interfacial and central layers are determined. To describe the structure of the interface, we compute the surface roughness, number density and charge density profiles, and orientation ordering of the ions. We further determine the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to characterize the dynamics of the cations and anions in the layers. We found a significant enhancement of the cation density and preferential orientation ordering of both the cations and anions at the interface. Overall, the surface of the interfacial layer is smoother than the surface of the sub-interfacial layer and the roughness of both the interfacial and sub-interfacial layers increases with the increase of the length of the cation alkyl tail. Finally, the ions stay considerably longer in the interfacial layer than in the sub-interfacial layer and dynamics of exchange of the ions between the consecutive layers is related to the distinct diffusion and re-orientation dynamics behavior of the ions within the layers.  相似文献   

9.
The relative volatilities of a variety of common ionic liquids have been determined for the first time. Equimolar mixtures of ionic liquids were vacuum-distilled in a glass sublimation apparatus at approximately 473 K. The composition of the initial distillate, determined by NMR spectroscopy, was used to establish the relative volatility of each ionic liquid in the mixture. The effect of alkyl chain length was studied by distilling mixtures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, or mixtures of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, with different alkyl chain lengths. For both classes of salts, the volatility is highest when the alkyl side chain is a butyl group. The effect of cation structure on volatility has been determined by distilling mixtures containing different types of cations. Generally speaking, ionic liquids based on imidazolium and pyridinium cations are more volatile than ionic liquids based on ammonium and pyrrolidinium cations, regardless of the types of counterions present. Similarly, ionic liquids based on the anions [(C2F5SO2)2N](-), [(C4F9SO2)(CF3SO2)N](-) , and [(CF3SO2)2N](-) are more volatile than ionic liquids based on [(CF3SO2)3C](-) and [CF3SO3](-), and are much more volatile than ionic liquids based on [PF6](-).  相似文献   

10.
Molecular dynamics simulations were performed for ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion, [NTf(2)], and ammonium cations with increasing length of the alkyl chain and ether functionalized chain. The signature of charge ordering is a sharp peak in the charge-charge structure factor, S(qq)(k), whose intensity is barely affected for longer carbon chain in tetraalkylammonium systems, but decreases in ether functionalized ionic liquids. The first sharp diffraction peak (FSDP) and the corresponding intermediate range order (IRO) are observed in the total S(k) of ionic liquids containing ammonium cations with relatively long chains. The intensity of the FSDP is lower in the total S(k) of the ether derivative in comparison with the tetraalkylammonium counterpart of the same chain length. It is shown that the nature of the IRO is structural heterogeneity of polar and non-polar domains, even though domains defined by chain interactions in the ether derivatives become more polar. Charge correlation in the ether derivative is modified because cations can be coordinated by oxygen atoms of the ether functionalized chain of neighboring cations.  相似文献   

11.
The surface and aqueous interfacial tensions for a series of water-immiscible room-temperature ionic liquids (RTILs) have been measured. The RTILs used in this study were based on 1-alkyl-3-methylimidazolium cations (Cnmim, n=6, 8, 10, and 12) and bis(perfluoromethylsulfonyl)imide (BMSI) and bis(perfluoroethylsulfonyl)imide (BETI) anions. It was found that the surface tensions of the RTILs increased with an increasing cation chain length similar to the behavior of n-alkanes. Interfacial tensions of the RTILs with aqueous solutions, however, were found to decrease with the cation chain length, which has been attributed to the increased surface activity of the longer chain cations. We have also demonstrated the first use of electrocapillary measurements to study the polarizable RTIL/aqueous interfaces. From the electrocapillary data, the potential of zero charge (PZC) for these RTIL/aqueous interfaces was determined, as well as the relative surface excess charge and capacitance. The PZC was found to be dependent upon the structure of the anions and cations with PZC values ranging from -357 mV for C6mimBETI and -161 mV for C10mimBMSI. The electrocapillary results also show that the cations of the RTIL are becoming increasingly surface-active as the alkyl chain on the cation is lengthened, thereby modulating the interfacial potential.  相似文献   

12.
The surface tensions were measured at atmospheric pressure, with use of a ring tensiometer, of a series of alcoholic solutions of closely related ionic liquids: 1-methyl-3-methylimidazolium methylsulfate, [MMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium methylsulfate, [BMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OcSO4] in alcohol (methanol, or 1-butanol at 298.15 K) and of 1-hexyloxymethyl-3-methylimidazolium tetrafluoroborate, [C6H(13)OCH2MIM][BF4], 1,3-dihexyloxymethylimidazolium tetrafluoroborate, [(C6H13OCH2)2IM][BF4] in alcohol (methanol, or 1-butanol, or 1-hexanol at 308.15 and 318.5 K) and hexyl(2-hydroxyethyl)dimethylammonium bromide, C6Br in 1-octanol at 298.15 K. The set of ammonium ionic liquids of different cations and anions (C2Br, C2BF4, C2PF6, C2N(CN)2, C3Br, C4Br and C6Br) was chosen to show the influence of small amount of the ammonium ionic liquid on the surface tension of water at 298.15 K. The influence of the cation, or anion alkyl chain length on the properties under study (densities and surface tension) was tested.  相似文献   

13.
This is the third set of parameters of a force field for the molecular simulation of ionic liquids, developed within the spirit of the OPLS-AA model and thus oriented toward the calculation of equilibrium thermodynamic and structural properties. The parameter sets reported here concern the cations alkylimidazolium, tetra-alkylphosphonium, and N-alkylpyridinium, and the anions chloride, bromide, and dicyanamide. The force field is built in a stepwise manner that allows the construction of models for an entire family of cations, with alkyl side chains of different length, for example. Due to the transferability of the present force field, the ions studied here can be combined with those reported in our two previous publications to create a large variety of ionic liquids that can be studied by molecular simulation. The parameters reported were obtained through different series of ab initio calculations concerning the geometry, force constants, torsion energy profiles, and electrostatic charge distributions of the ions under study. Validation of the force field consisted of comparison with experimental crystal structure and liquid density data.  相似文献   

14.
This work addresses the experimental measurements of the surface tension of eight imidazolium based ionic liquids (ILs) and their dependence with the temperature (288-353 K) and water content. The set of selected ionic liquids was chosen to provide a comprehensive study of the influence of the cation alkyl chain length, the number of cation substitutions and the anion on the properties under study. The influence of water content in the surface tension was studied for several ILs as a function of the temperature as well as a function of water mole fraction, for the most hydrophobic IL investigated, [omim][PF(6)], and one of the more hygroscopic IL, [bmim][PF(6)]. The surface thermodynamic functions such as surface entropy and enthalpy were derived from the temperature dependence of the surface tension values.  相似文献   

15.
The influence of small amounts of water dissolved in 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) on the composition of the surface of the ionic liquid is investigated with the depth profiling technique neutral impact collision ion scattering spectroscopy. The concentration depth profiles of the elements in the sample were determined at three different water concentrations and show that small amounts of water affect the charge distribution in the ionic liquid along the surface normal. At low water concentrations (2500 ppm) the cation shows a strong presence at the surface with the alkyl chains oriented towards the gas phase, followed by a layer of anions below the alkyl chains of the cation. At higher water content (6000 to 10,000 ppm) the chloride anion shows an increased concentration at the ionic liquid surface while the alkyl chains move towards the bulk showing that the surface charge becomes more negative with increasing water content. The effect is attributed to the influence of water on the hydrogen bonding network in the ionic liquid.  相似文献   

16.
The influence of the alkyl-substituent chain in 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids ([C(n)mim][NTf(2)], where n is the length of a linear alkyl chain) as solvents for the separation of benzene and hexane by liquid extraction was investigated. The liquid-liquid equilibrium (LLE) at 25 degrees C for the ternary systems ([C(n)mim][NTf(2)] + hexane + benzene), with n taking the values 4, 8, 10, and 12, were determined. These data were analyzed and compared to those previously reported for the system ([C(2)mim][NTf(2)] + hexane + benzene). The results show that short alkyl chains on the imidazolium cation of the ionic liquid lead to a better extractive separation of benzene and hexane, and reveal the influence of the relative degree of ordering in the ionic liquids on the extraction parameters.  相似文献   

17.
We present results on state-resolved scattering studies for seeded CO(2) supersonically cooled molecular beams (E(inc) = 61.9(40) kJ/mol) from a series of room-temperature ionic liquids (RTILs). These RTILs are composed of C(n)-methylimidazolium cations with BF(4)(-) or Tf(2)N(-) counteranions. The final rovibrational quantum state distributions from these nonequilibrium surface scattering collisions are monitored by high-resolution diode laser absorption spectroscopy as a function of (i) cation alkyl chain length and (ii) anion size, and analyzed to yield the propensity for thermal desorption (TD) versus impulsive scattering (IS) dynamics. For a fixed BF(4)(-) or Tf(2)N(-) counteranion, the distributions reveal an increase in the TD fraction (α) with the C atom number (n) in the alkyl side chain, which provides evidence for selective preference of nonpolar groups at the gas-liquid interface with increasing chain length. Conversely, for short carbon chains (n = 4), the thermal fraction decreases when the anion is changed from a compact and less polarizable BF(4)(-) to the bulkier and more polarizable Tf(2)N(-), whereas any sensitivity to anion identity essentially vanishes for longer alkyl chains (n = 8, 12). These combined data illustrate a number of interesting trends in anion versus cation competition for interfacial sites, specifically (i) the presence of interfacial anions at the surface layer for sufficiently short alkyl headgroups, (ii) inertial "stiffening" due to increasing average surface mass, as well as (iii) a propensity for larger anion sizes in the interfacial region. Finally, the TD probabilities follow the exact opposite trend in "bulk" Henry's Law solubility constants with respect to anion size, which further highlights the intrinsically nonequilibrium dynamics sampled by hyperthermal collisions at the gas-liquid interface.  相似文献   

18.
Systematic molecular dynamics simulations are used to study the structure, dynamics and transport properties of the ionic liquids composed of the tetra-butylphosphonium ([TBP](+), or [P(C(4)H(9))(4)](+)) cation with six amino acid ([AA](-)) anions. The structural features of these ionic liquids were characterized by calculating the partial site-site radial distribution functions, g(r), and computing the dihedral angle distribution of n-butyl side chains in the [TBP](+) cations. The dynamics of the ionic liquids are described by studying the velocity autocorrelation function (VACF) and the mean-square displacement (MSD) for the centers of mass of the ions at different temperatures. The ionic diffusion coefficients and the electrical conductivities were evaluated from both the Einstein and Green-Kubo methods. The cross-correlation terms in the electric-current autocorrelation functions, which are an indication of the ion pair correlations, are investigated. The cationic transference numbers were also estimated to study the contributions of the anions and cations to the transport of charge in these ionic liquids. We determined the role of the amino acid anion structures on the dynamical behavior and the transport coefficients of this family of ionic liquids. In general, the MSD and self-diffusion coefficients of the relatively heavier non-planar [TBP](+) cations are smaller than those of the lighter amino acid anions. Introducing polar functional groups (acid or amide) in the side chain of [AA](-) decreases the diffusion coefficient and electrical conductivity of AAILs. The major factors for determining the magnitude of the transport coefficients are the chemical functionality and the length of the alkyl side chain of the [AA](-) anion of these [TBP][AA] ionic liquids.  相似文献   

19.
Self-aggregation of polyoxyethylene (POE)-type nonionic surfactants in ionic liquids, 1-butyl- and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (bmimCF3SO3 and emimCF3SO3), was investigated by means of 1H-NMR chemical shift, dynamic light-scattering (DLS), and surface tension measurements. The surfactants showed no definite aggregate formation in bmimCF3SO3. This shows a remarkable contrast to the previous observation in bmimBF4 and bmimPF6, and demonstrates an importance of anion species to determine the property of ionic liquids as a solvent to support the self-assembly of amphiphilic compounds. On the other hand, the surfactants formed micelles in emimCF3SO3, which shows an importance of alkyl chain attached to imidazolium ring to determine the solvophobic interaction between surfactant hydrocarbon chains in imidazolium-based ionic liquids. The low solvophobicity of the surfactants to the ionic liquid composed of imidazolium cation with long alkyl chain is attributed to an affinity of the surfactant hydrocarbon chain to the imidazolium alkyl chain. The values of micellization parameters and surface adsorption parameters obtained for the surfactant solutions in emimCF3SO3 are reported.  相似文献   

20.
探讨了以离子液体作为液相色谱流动相添加剂,对植物激素赤霉素GA3、生长素IAA和脱落酸ABA的分离的影响,以及离子液体的烷烃链长度,阴离子及离子液体的浓度对分离的影响。结果表明:咪唑阳离子和植物激素通过静电作用而保留;植物激素本身的pKa值影响其保留因子,pKa值增大,离子液体浓度对植物激素保留因子影响增大;另外随[BMIM]对应的阴离子电负性的减小,植物激素的保留因子明显地增大;同时植物激素的空间位阻也影响其分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号