共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we have used the finite-difference time-domain (FDTD) method to analyze the optical pulse propagation in a nonlinear, one-dimensional photonic crystal (1DPC). Hyperbolic secant pulses with various carrier wavelengths are utilized in this study. In a nonlinear regime, a 1DPC introduces a photonic band-gap whose central wavelength and width depend on the input pulse intensity. In the present work, three different cases are considered. These correspond to the carrier wavelengths of the incident pulses being out of, near to, and partially in the band-gap. For each case, the effect of nonlinearity on pulse propagation is investigated. Also, we have analyzed the two-frequency regime, in which each of the two pulses has a different carrier frequency (wavelength). This kind of study can be done directly with FDTD without any further computational burden but it is somewhat complicated using nonlinear coupled-mode equations (NLCME) and nonlinear Schrödinger equation (NLSE), which require separate treatments for each carrier wavelength. 相似文献
2.
Adaptive split-step Fourier method for simulating ultrashort laser pulse propagation in photonic crystal fibres 下载免费PDF全文
In this paper, the generalized nonlinear Schr\"{o}dinger equation (GNLSE) is
solved by an adaptive split-step Fourier method (ASSFM). It is found that
ASSFM must be used to solve GNLSE to ensure precision when the soliton
self-frequency shift is remarkable and the photonic crystal fibre (PCF)
parameters vary with the frequency considerably. The precision of numerical
simulation by using ASSFM is higher than that by using split-step Fourier
method in the process of laser pulse propagation in PCFs due to the fact
that the variation of fibre parameters with the peak frequency in the pulse
spectrum can be taken into account fully. 相似文献
3.
A new structure based on a semi-circular photonic crystal is proposed to achieve asymmetric light propagation. The semi-circular photonic crystal structure proposed in this paper is a deformation of a two-dimensional conventional square photonic crystal. Through the directional bandgap of the semi-circular photonic crystal, the light from one direction can transfer to the other side, but the light from the opposite direction cannot. A high contrast ratio is obtained by designing the constitutive parameters of the photonic crystal and choosing the suitable light frequency. This structure promises a significant potential in optical integration and other areas. 相似文献
4.
5.
6.
用实验和数值模拟两种方法研究了高非线性光子晶体光纤中飞秒激光脉冲的传输特性和超连续谱的产生机理,给出了抽运脉冲在三种不同中心波长情况下输出光谱展宽并形成超连续谱的实际测量及理论模拟结果.研究表明:在零色散波长抽运时,光谱展宽以自相位调制为主,同时三阶色散的影响明显,传输脉冲在时域内出现振荡次峰.而在反常色散区抽运时,光谱展宽的初期以自相位调制为主,随后根据抽运功率的不同孤子自频移、高阶光孤子的裂变和四波混频效应会逐渐增强,进而成为光谱展宽的主要原因.与此相应,在时域中能明显看到孤子的形成和红移,飞秒传输脉
关键词:
光子晶体光纤
高非线性光子晶体光纤
飞秒脉冲激光
超连续谱 相似文献
7.
8.
Charged colloidal suspensions have been used as experimental models for the study of crystal nucleation. Here we propose that the technique of template-assisted colloidal self-assembly can be used to visualize the effects of defect propagation in atomic crystal films produced using epitaxial growth. Templates with periodic line defects were used to grow [100]-oriented three-dimensional photonic crystals by means of the template-assisted colloidal self-assembly method, aided by capillary and gravitational forces. The defect propagation in the [100]-oriented photonic crystal was observed using scanning electron microscopy, both at the surface of the crystal and on cleaved facets. This method is useful in the understanding of defect propagation in the growth of colloidal films on templates - and the same approach may also prove useful for the understanding of atomic crystal growth on substrates with defects. Additionally, the deliberate incorporation of line defects may prove valuable as a way of introducing waveguide channels into three-dimensional photonic crystals. 相似文献
9.
The propagation of light waves in one-dimensional photonic crystals (1DPCs) composed of alternating layers of two kinds of single-negative materials is investigated theoretically. The phase velocity is negative when the frequency of the light wave is smaller than the certain critical frequency ωcr, while the Poynting vector is always positive. At normal incidence, such 1DPCs may act as equivalent left-handed materials. At the inclined incidence, the effective wave vectors inside such 1DPCs do refract negatively, while the effective energy flows do not refract negatively. Therefore, at the inclined incidence, the 1DPCs are not equivalent to the left-handed materials. 相似文献
10.
J. García A. Martínez F. Cuesta-soto P. Sanchis J. Blasco J. Martí 《Optical and Quantum Electronics》2005,37(1-3):199-211
Extremely large group velocity dispersion of both signs can be achieved at the band edges of guided modes in photonic crystal waveguides. The selection of a proper value and sign of this parameter allows the design of short-length waveguides to compensate for pulse broadening. This pulse broadening can be caused, for instance, when a photonic crystal delay line is introduced. We present a theoretical study of the possibilities of using photonic crystal waveguides as intra-circuital dispersion compensation elements for ultrashort pulses, so the width of a transmitted pulse can be reduced. However, we also demonstrate that recovering the original pulse shape is not possible for these large-bandwidth pulses due to higher-order dispersion terms. 相似文献
11.
在传统光学原理框架下,高效光传输问题在集成光电子领域的发展受到了制约。人们希望从物理源头出发,提出新型原理机制或设计方法,来获得整体上的高保真光传输性能。这正好与近年兴起的拓扑光子学内涵相吻合。近年来,光子晶体和超构材料等多种电磁系统都被用于拓扑光子学的研究中,并受到了广泛关注。文章简要回顾拓扑光子学的发展历程,重点介绍能谷光子晶体的物理特性和最新研究进展,集中论述了电磁对偶能谷光子晶体的理论提出、能谷光子晶体分类与微波实验观测、硅基能谷光子晶体与光波段传输实现等方面。最后,将讨论该领域的未来,并展望其在微纳集成光子学领域的可能发展方向。 相似文献
12.
Negative refraction in photonic crystals 总被引:4,自引:0,他引:4
We demonstrate that light propagation in strongly modulated 2D/3D photonic crystals (PhCs) becomes refraction-like in the vicinity of the photonic bandgap, which is contrary to the fact that light propagation in weakly modulated PhCs is very different from refraction and thus the definition of refraction index becomes meaningless. Such a crystal behaves like a material having an effective refractive index controllable by the band structure. This situation is analogous to the effective-mass approximation in electron-band theory. The propagation states having a negative effective index exhibit unusual properties, such as mirror-like imaging effect, image-transfer effect. These properties are confirmed by finite-difference time-domain simulations. 相似文献
13.
Shinya Akihiko Notomi Masaya Yokohama Itaru Takahashi Chiharu Takahashi Jun-Ichi Tamamura Toshiaki 《Optical and Quantum Electronics》2002,34(1-3):113-121
Two-dimensional photonic crystals (2D-PhCs) on oxide can be easily incorporated into photonic integrated circuits. Although an asymmetrical structure (air/PhC/oxide) is advantageous in terms of ease of fabrication, it has been pointed out that such a structure may have no photonic band gap (PBG). To clarify the characteristics of the asymmetrical structure, we calculated the band structure using the three-dimensional (3D) FDTD method and measured the transmission characteristics of a fabricated 2D Si-PhC on oxide. The calculations show that we can use a quasi-PBG even in an asymmetrical structure when the PhC thickness satisfies the single-mode condition. The measured transmission characteristics correspond to the calculated band structure and reveal the existence of a quasi-PBG. These results show that the asymmetrical 2D Si-PhC-on-oxide structure can be applied to various optical devices. 相似文献
14.
Using the finite element method, this paper investigates lateral
stress-induced propagation characteristics in a photonic crystal
fibre of hexagonal symmetry. The results of simulation show the
strong stress dependence of effective index of the fundamental
guided mode, phase modal birefringence and confinement loss. It also
finds that the contribution of the geometrical effect that is
related only to deformation of the photonic crystal fibre and the
stress-related contribution to phase modal birefringence and
confinement loss are entirely different. Furthermore,
polarization-dependent stress sensitivity of confinement loss is
proposed in this paper. 相似文献
15.
We study the pulse propagation in a one-dimensional photonic crystal using the finite-difference time-domain method. The wave
propagation inside the crystal is the result of superposition of forward and backward waves. We observed the superluminal
phenomena and negative values of the velocity of the energy-density maximum. The energy velocities within the crystal never
exceed the speed of light in vacuum. We hope that our study contributes to a further understanding of the superluminal phenomena. 相似文献
16.
The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices
composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band
gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size
of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported,
how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric
rods in 2D photonic crystals. 相似文献
17.
In this paper we analyze theoretically how the introduction of the third component into the two-dimensional photonic crystal influences the photonic band structure and the density-of-states of the system. We consider the periodic array of cylindrical air rods in a dielectric, and the third medium is introduced as a ring-shaped intermediate layer of thickness d and dielectric constant i between the air pores and the dielectric background. Using the plane wave method, we have obtained the band structures for the 2D triangular lattice photonic crystals. The dependencies of TE and TM band gaps’ widths and gaps’ edges position on the interlayer dielectric constant and interlayer thickness were analyzed. In the framework of this approach, we have estimated the influence of the surface oxide layer on the band structure of macroporous silicon. We observed the shift of the gaps’ edges to the higher or lower frequencies, depending on the interlayer thickness and dielectric constant. We have shown that the existence of a native oxide surface layer should be taken into consideration to understand the optical properties of 2D photonic crystals, particularly in macroporous silicon structures. 相似文献
18.
研究了正方晶格和三角晶格空气背景硅介质柱光子晶体线缺陷波导导模左带隙边缘处的亮孤子脉冲传播特性及其慢光延迟特性. 采用平面波展开法仿真分析了波导相邻两行介质柱大小r1和r2以及波导宽度D对孤子脉冲传输所需峰值功率P0和延迟时间Ts的影响,总结了其变化规律. 通过调整波导结构得到了正方晶格和三角晶格优化波导结构,优化后,正方晶格结构波导P0减小了81.17%,Ts增加了66.32%;三角晶格结构波导P0减小了73.7%,Ts增加了67.63%,实现了孤子传输性能的大幅度优化.
关键词:
光子晶体波导
光孤子
峰值功率
延迟时间 相似文献
19.
20.
We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation. 相似文献