首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report for the first time semi-quantitative analysis of indigo using surface enhanced Raman spectroscopy (SERS) and surface enhance resonance Raman spectroscopy (SERRS). Indigo, a dye widely used today in the textile industry, has been used, historically, both as a dye and as a pigment; the latter in both paintings and in printed material. The molecule is uncharged and largely insoluble in most solvents. The application of SERS/SERRS to the semi-quantitative analysis of indigo has been examined using aggregated citrate-reduced silver colloids with appropriate modifications to experimental protocols to both obtain and maximise SERRS signal intensities. Good linear correlations are observed for the dependence of the intensities of the SERRS band at 1151 cm(-1) using laser exciting wavelengths of 514.5 nm (R=0.9985) and 632.8 nm (R=0.9963) on the indigo concentration over the range 10(-7)-10(-5) and 10(-8)-10(-5) mol dm(-3), respectively. Band intensities were normalised against an internal standard (silver sol band at 243 cm(-1)). Resonance Raman spectra (RRS) of aqueous solutions of indigo could not be collected because of its low solubility and the presence of strong fluorescence. It was, however, possible to obtain RS and RRS spectra of the solid at each laser excitation wavelength. The limits of detection (L.O.D.) of indigo by SERS and SERRS using 514.5 and 632.8 nm were 9 ppm at both exciting wavelengths. Signal enhancement by SERS and SERRS was highly pH dependent due to the formation of singly protonated and possibly doubly protonated forms of the molecule at acidic pH. The SERS and SERRS data provide evidence to suggest that an excess of monolayer coverage of the dye at the surface of silver colloids is observed at concentrations greater than 7.85x10(-6) mol dm(-3) for each exciting wavelength. The data reported herein also strongly suggest the presence of multiple species of the indigo molecule.  相似文献   

2.
The application of surface enhanced resonance Raman spectroscopy (SERRS) to the semi-quantitative analysis of the dye, indigo carmine, has been examined using citrate-reduced silver colloids. Good linear correlations are observed for the dye band at 1580 cm(-1) in the concentration range 10(-7)-10(-5) and 10(-9)-10(-5) mol dm(-3), using laser exciting wavelengths of 514.5 [(R=0.9983)] and 632.8 nm [(R=0.9978)], respectively. At concentrations of dye above 10(-6) M the concentration dependence of the SERRS signals is non-linear due to the coverage of the surface of the colloidal particles by the dye being in excess of a full monolayer. At concentrations above 10(-6) M resonance Raman spectroscopy (RRS) can be employed for the quantitative analysis of the dye. An internal standard was used and a good linear correlation (R=0.997) was observed for the dependence of dye signal intensities at 1580 cm(-1) in the concentration range 10(-5)-10(-4) M using a laser exciting wavelength of 514.5 nm. The limits of detection of indigo carmine by SERRS (514.5 nm), SERRS (632.8 nm) and solution RRS (514.5 nm) are found to be 0.9, 1 and 38 ppm, respectively.  相似文献   

3.
To evaluate the contribution of local pulsed heating of light-absorbing microregions to biochemical activity, irradiation of Escherichia coli was carried out using femtosecond laser pulses (λ = 620 nm, τp=3 × 10−13 s, fp = 0.5 Hz, Ep = 1.1 × 10−3J cm−2, Iav = 5.5 × 10−4 W cm−2, Ip = 109 W cm−2) and continuous wave (CW) laser radiation (λ = 632.8 nm, I = 1.3 W cm−2). The irradiation dose required to produce a similar biological effect (a 160%–190% increase in the clonogenic activity of the irradiated cells compared with the non-irradiated controls) is a factor of about 103 lower for pulsed radiation than for CW radiation (3.3 × 10−1 and 7.8 × 102 J cm−2 respectively). The minimum size of the microregions transiently heated on irradiation with femtosecond laser pulses is estimated to be about 10 Å, which corresponds to the size of the chromophores of hypothetical primary photoacceptors—respiratory chain components.  相似文献   

4.
A lithium phthalocyanine radical and the analogous aluminum phthalocyanine radical were synthesized as part of an investigation of isostructural dopants. An improved synthesis of the free base of octa(pentoxy)phthalocyanine (H2Pc*) involves the reduction of 1,2-dicyano-4,5-dipentoxybenzene with hydroquinone. Deprotonation with lithium bis(trimethylsilyl)amide leads to the dilithium derivative Li2Pc* and subsequent oxidation with ferrocenium yields the radical LiPc*. Treatment of H2Pc* with Et2AlCl gives ClAlPc* and reduction with sodium amalgam yields AlPc*, the first reported aluminum phthalocyanine radical. In the solid state LiPc* and AlPc* are electrical conductors with pressed-pellet conductivities of 8 × 10−11 Ω−1 cm−1 and 5 × 10−7 Ω−1 cm−1, respectively.  相似文献   

5.
Pentaerythrityl tetraethylenediamine (PETEDA) dendrimer was synthesized from pentaerythrityl tetrabromide and ethylenediamine. Its molecular structure was characterized by elemental analysis, Fourier transform infrared resonance (FT-IR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. The composite membranes for selectively permeating CO2 were prepared by using PETEDA-PVA blend polymer as the active layer and polyethersulfone (PES) ultrafiltration membrane as the support layer and their permselectivity was tested by pure CO2 and CH4 gases and the gas mixture containing 10 vol.% CO2 and 90 vol.% CH4, respectively. For pure gases, the membrane containing 78.6 wt% PETEDA and 21.4 wt% PVA in the blend has a CO2 permeance of 8.14 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 and CO2/CH4 selectivity of 52 at 143.5 cmHg feed gas pressure. While feed gas pressure is 991.2 cmHg, CO2 permeance reaches 3.56 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 and CO2/CH4 selectivity is 19. For the gas mixture, the membrane has a CO2 permeance of 6.94 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 with a CO2/CH4 selectivity of 33 at 188.5 cmHg feed gas pressure, and a CO2 permeance of 3.29 × 10−5 cm3 (STP) cm−2 s−1 cmHg−1 with a CO2/CH4 selectivity of 7.5 at a higher feed gas pressure of 1164 cmHg. A possible gas transport mechanism in the composite membranes is proposed by investigating the permeating behavior of pure gases and the gas mixture and analyzing possible reactions between CO2/CH4 gases and the PETEDA-PVA blend polymer. The effect of PETEDA content in the blend polymer on permselectivity of the composite membranes was investigated, presenting that CO2 permeance and CO2/CH4 selectivity increase and CH4 permeance decreases, respectively with PETEDA content. This is explained by that with increasing PETEDA content, the carrier content increases, and the crystallinity and free volume of the PETEDA-PVA blend decrease that were confirmed by the experimental results of X-ray diffraction spectra (XRD) and positron annihilation lifetime spectroscopy (PALS).  相似文献   

6.
The syntheses and structural determination of NdIII and ErIII complexes with nitrilotriacetic acid (nta) were reported in this paper. Their crystal and molecular structures and compositions were determined by single-crystal X-ray structure analyses and elemental analyses, respectively. The crystal of K3[NdIII(nta)2(H2O)]·6H2O complex belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5490(11) nm, b=1.3028(9) nm, c=2.6237(18) nm, β=96.803(10)°, V=5.257(6) nm3, Z=8, M=763.89, Dc=1.930 g cm−3, μ=2.535 mm−1 and F(000)=3048. The final R1 and wR1 are 0.0390 and 0.0703 for 4501 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0758 and 0.0783 for all 10474 reflections, respectively. The NdIIIN2O7 part in the [NdIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly. The crystal of the K3[ErIII(nta)2(H2O)]·5H2O complex also belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5343(5) nm, b=1.2880(4) nm, c=2.6154(8) nm, b=96.033(5)°, V=5.140(3) nm3, Z=8, M=768.89, Dc=1.987 g cm−3, μ=3.833 mm−1 and F(000)=3032. The final R1 and wR1 are 0.0321 and 0.0671 for 4445 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0432 and 0.0699 for all 10207 reflections, respectively. The ErIIIN2O7 part in the [ErIII(nta)2(H2O)]3− complex anion has the same structure as NdIIIN2O7 part in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly.  相似文献   

7.
A series of hydroxyl-conducting anion-exchange membranes were prepared by blending chloroacetylated poly(2,6-dimethyl-1,4-phenylene oxide) (CPPO) with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO), and their fuel cell-related performances were evaluated. The resulting membranes exhibited high hydroxyl conductivities (0.022–0.032 S cm−1 at 25 °C) and low methanol permeability (1.35 × 10−7 to 1.46 × 10−7 cm2 s−1). All the blend membranes proved to be miscible or partially miscible under the investigations of scanning electron microscopy (SEM) and differential scanning calorimeters (DSC). By condition optimization, the blend membranes with 30–40 wt% CPPO are recommended for application in direct methanol alkaline fuel cells because they showed low methanol permeability, excellent mechanical properties and comparatively high hydroxyl conductivity.  相似文献   

8.
Sulfonated poly(styrene-co-acrylonitrile) (PSAN–SO3H) membranes were obtained by sulfonation of the original styrene–acrylonitrile copolymer, in different molar ratios, and characterized by vibrational spectroscopy (FTIR), thermal analyses (TGA and DSC) and electrochemical impedance spectroscopy (EIS). The thermal stability of the sulfonated polymers exhibited a dependence on the sulfonation degree and reached 261 °C for samples up to 1:4 (sulfonating agent to styrene unit). FTIR spectra showed the covalent incorporation of sulfonic groups at the styrene units, confirming the PSAN–SO3H formation. Vibrational spectra also indicated the presence of hydronium ions and dissociated sulfonic groups, indicating the existence of mobile protons for ion conduction. DSC analyses evidenced two glass transition temperatures (Tg), one associated with an ion-water domain and other with the chain backbone glass transition. The maximum conductivity of PSAN–SO3H membranes at ambient temperature was about 10−3 Ω−1 cm−1, achieving 10−2 Ω−1 cm−1 at 80 °C. The conductivity dependency on the temperature was found to be linear, similarly to other sulfonic acid polymers described on the literature, and the water uptake reaches 45.7% of the polymer mass, against 18.9% of the original copolymer.  相似文献   

9.
A new, highly sensitive and simple kinetic method for the determination of thyroxine was proposed. The method was based on the catalytic effect of thyroxine on the oxidation of As(III) by Mn(III) metaphosphate. The kinetics of the reaction was studied in the presence of orthophosphoric acid. The reaction rate was followed spectrophotometrically at 516 nm. It was established that orthophosphoric acid increased the reaction rate and that the extent of the non-catalytic reaction was extremely small. A kinetic equation was postulated and the apparent rate constant was calculated. The dependence of the reaction rate on temperature was investigated and the energy of activation and other kinetic parameters were determined.

Thyroxine was determined under the optimal experimental conditions in the range 7.0 × 10−9 to 3.0 × 10−8 mol L−1 with a relative standard deviation up to 6.7% and a detection limit of 2.7 × 10−9 mol L−1. In the presence of 0.08 mol L−1 chloride, the detection limit decreased to 6.6 × 10−10 mol L−1. The proposed method was applied for the determination of thyroxine in tablets. The accuracy of the method was evaluated by comparison with the HPLC method.  相似文献   


10.
A novel method of preparing fluorescence particle probe by emulsion polymerization with covalent immobilization of indicator dye was described. A terminal double bond was attached to 3-amino-9-ethylcarbazole (AEC) via methacryloyl chloride, and the resultant compound was copolymerized with butyl methacrylate. The obtained polymer particles were used as a fluorescence probe, which is almost free of dye leaching, and has higher photostability and lower toxicity in comparison with free AEC. This probe holds great potential for the applications in intracellular measurements. In present study the prepared probe was used for the determination of metronidazole. The results revealed that the probe showed good selectivity and had a linear response to the analyte in the range from 2.0 × 10−5 to 1.0 × 10−3 mol l−1 with a detection limit of 9.0 × 10−6 mol l−1.  相似文献   

11.
Trace amounts of nickel(II) can function as a trigger (=reaction initiator) in an autocatalytic reaction with the sodium sulfite/hydrogen peroxide system. Based on this finding, sub-μg L−1 levels of nickel(II) were determined by a time measurement using the autocatalytic reaction. The detection range using the above method was 10−9–10−5 M, the detection limit (3σ) was 8.1 × 10−10 M (0.047 μg L−1), and the relative standard deviation was 2.66% at nickel(II) concentration of 10−7 M (n = 7). This method was applied to length detection-flow injection analysis. The detection range for the flow injection analysis was 2 × 10−9–2 × 10−3 M. The detection limit (3σ) was 1.4 × 10−9 M (0.082 μg L−1), and the relative standard deviation was 1.86 at initial nickel(II) concentration of 10−6 M (n = 7).  相似文献   

12.
Infrared spectroscopy measurements on different hemoproteins and models of the active side have been completed for the spectral range from 1800 to 100 cm−1 giving an overview on the contributions expected in the low frequency range. Little is known of the low frequency contribution of proteins in infrared. In order to detect the contributions of heme centers and protein moiety, a systematic study of the infrared spectroscopic properties of the porphyrin ring, the ferric porphyrines with different ligands (hemine and hematine), a heme with 11 amino acids (microperoxidase-11), cytochrome c and cytochrome c oxidase are compared at different pD values and an overview on the relative contributions of hemes, their ligands and the protein site can be provided in the low frequency region. Beside the well know amide I and II modes, the low frequency range is found to be dominated by the amide IV and VI mode around 530/580 cm−1 for cytochrome c and cytochrome c oxidase, as well as further proteins like ferrodoxin. Below 300 cm−1 amide VII modes, doming modes of the heme site and hydrogen-bonding signatures overlap to a broad peak with covering 100–250 cm−1. As clear markers for the iron ligands, bands can be depicted at 388/378 cm−1 (FeN, histidine ligand) and 345 cm−1 FeCl. Furthermore the ring vibration of the protonated histidine is determined at 623 cm−1.  相似文献   

13.
A configuration of dense mixed ionic and electronic conducting (MIEC) membrane with layered morphological structure for oxygen separation, which combines the benefits of high oxygen permeation flux of cobalt-based membrane, high chemical stability of iron-based perovskite and high mechanical strength of thick membrane, was studied. The membrane is normally composed of two layers; each layer is a dense MIEC oxide. The substrate layer is a thick dense membrane with high oxygen permeability but relatively lower chemical stability. The feasibility of dense thick Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) membrane as the substrate layer and Ba0.5Sr0.5Co0.2Fe0.8O3−δ (BSCF5528) as the thin-film layer was mainly experimentally investigated. Both the BSCF5582 and the BSCF5528 show the same cubic perovskite structure and the similar lattice constant with no detrimental reaction products formed. By optimizing fabrication parameters of a simple dry pressing process, dual-layered membrane, free of cracks, was successfully fabricated. The oxygen permeation flux of a dual-layered membrane with the thin-film BSCF5528 layer facing to the sweep gas reached 2.1 mL cm−2 min−1 [STP] (1.56 × 10−6 mol cm−2 s−1) at 900 °C, which is about 3.5 times higher than that of the BSCF5528 membrane (0.6 mL cm−2 min−1, [STP] (4.46 × 10−7 mol cm−2 s−1) under the same conditions.  相似文献   

14.
This paper presents a study about moderation and collimation of a neutron radiography system using 252Cf. A Monte Carlo Code, MCNP4B, has been used to obtain a maximum and more homogeneous thermal neutron flux in the collimator outlet next to the image plane. Among the various moderator materials investigated, high density polyethylene proved to be the most efficient, with a thermalization factor of 56 cm2. Using a collimator design assembly it was possible to obtain a normalized thermal neutron flux, at the image plane of 6×10−6 n cm−2 s−1 at an effective collimator ratio of 7.5, or 3.2×10−7 n cm−2 s−1 at an effective collimator ratio of 50.  相似文献   

15.
Influence of the intermolecular interactions in solid phase on the overlapped IR-spectroscopic pattern of (R)-(−)-1-phenylglycinium hydrogen squarate monohydrate is studied experimentally by means of a complex approach, including IR-LD spectroscopy of oriented solid-samples as suspension in nematic liquid crystal, reducing difference procedure for polarized spectra interpretation, deconvolution and curve-fitting procedures. Raman ones completes the IR-spectroscopic data. The experimental results are supported with theoretical ones and the calculated frequencies obtained on UHF/6-311++G** level of theory and basis and scaled with a factor of 0.8929 correlated well with experimental observed data, giving a standard deviation of 9 cm−1 for so-called non-characteristic bands.  相似文献   

16.
Novel poly(arylene ether)s with sulfonic acid groups attached onto pendent biphenyl rings were successfully synthesized by the nucleophilic displacement of aromatic dihalides with bisphenols in aprotic solvent in the present of excess potassium carbonate, followed by sulfonation with chlorosulfonic acid. The sulfonation took place only on the pendent biphenyl rings due to the specially designed molecular structure. The sulfonated polymers were very soluble in common organic solvents, such as dimethyl sulfoxide, N,N′-dimethylacetamide, dimethylformamide, and can be readily cast into tough and smooth films. These membranes showed excellent stabilities resistance to both oxidation and hydrolysis, as evidenced by subjecting to both Fenton's reagent test and immersion in boiling water. The proton conductivities (3.2 × 10−3 S cm−1) of the as-made membranes were higher than that of Nafion® 117 (1.9 × 10−3 S cm−1) under same conditions. The satisfied properties of these new polymers demonstrated them as promising candidates for proton exchange membrane in PEM fuel cell applications.  相似文献   

17.
The experimental and theoretically predicted Raman spectra for the first few alkanes in the homologous series: methane, ethane, propane and butane are presented for the region 2700–3100 cm−1. The structure of the spectra is rather complex. Analysis of the results obtained shows that Fermi resonance occurs between the CH stretching vibrations in the 3000 cm−1 region and the 2ν overtones of deformation vibrations in the low frequency (1450–1500 cm−1) region.  相似文献   

18.
The far infrared spectrum from 370 to 50 cm−1 of gaseous 2-bromoethanol, BrCH2CH2OH, was recorded at a resolution of 0.10 cm−1. The fundamental O–H torsion of the more stable gauche (Gg′) conformer, where the capital G refers to internal rotation around the C–C bond and the lower case g to the internal rotation around the C–O bond, was observed as a series of Q-branch transitions beginning at 340 cm−1. The corresponding O–H torsional modes were observed for two of the other high energy conformers, Tg (285 cm−1) and Tt (234 cm−1). The heavy atom asymmetric torsion (rotation around C–C bond) for the Gg′ conformer has been observed at 140 cm−1. Variable temperature (−63 to −100°C) studies of the infrared spectra (4000–400 cm−1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm−1 (4.92±0.48 kJ/mol) for the Gg′/Tt and 315±40 cm−1 (3.76±0.48 kJ/mol) for the Gg′/Tg, with the Gg′ conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree–Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg′ conformers.  相似文献   

19.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

20.
Various amino acid derivatives of monascus pigments were synthesized. The effects of pigment derivatives on the pigment adsorption ratio, electrophoretic mobility (EPM) of bacterial cells, and antibacterial activity were investigated under varying conditions of pigment type, pigment concentration, pH, and ionic strength. Two hydrophobic and two hydrophilic derivatives were selected as model pigments. There was a close relationship between the antimicrobial activity and the pigment adsorption ratio. Against Escherichia coli, the hydrophobic l-Tyr and l-Phe derivatives (log P = 3.18 and 3.57) exhibited high antimicrobial activities (MIC = 8 and 16 mg/L) and high cellular adsorption ratios (9.6 and 10.9 mg/L). The hydrophilic l-Glu and l-Asn derivatives (log P = 1.40 and 0.47) exhibited low activities (MIC = 64 and 128 mg/L) and low adsorption ratios (4.7 and 4.0 mg/L). The electrophoretic mobility of 11 different bacteria varied between −1.93 × 10−8 and −1.19 × 10−8 m2 V−1 s−1 regardless of Gram+ or Gram. The l-Phe derivative showed low MIC values (high antimicrobial activities) against bacteria with a high electrophoretic mobility. A positive linearity between the pigment adsorption ratio and the electrophoretic mobility was established. When the four pigment derivatives were added to E. coli solutions, the electrophoretic mobility of cells in all cases sharply increased with an increasing pigment concentration. The mobility value was high for hydrophobic pigment derivatives in descending order of l-Phe (0.8 × 10−8 m2 V−1 s−1), l-Tyr (0.68 × 10−8 m2 V−1 s−1), l-Glu (0.46 × 10−8 m2 V−1 s−1), and l-Asn (0.44 × 10−8 m2 V−1 s−1). Additional adsorption of the hydrophobic derivatives probably occurred due to a hydrophobic interaction between the pigment and the pigment-coated cells. The electrophoretic mobility decreased gradually with an increasing pH and/or ionic strength with both addition and no addition of the pigment derivatives. The pattern of change of the pigment adsorption ratio under varying pH and/or ionic strength values was similar to the pattern for electrophoretic mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号