首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon containing materials have traditionally been used in microelectronic fabrication. Semi-conductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants (k) near 4.0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric (ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra-low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra-low k from 1.80 to 2.87, and good to high modulus, 1.5 to 5.5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.  相似文献   

2.
X‐ray reflectivity has been used to determine the mass uptake of probe molecules in porous thin films supported on thick silicon wafers. The adsorption occurs by capillary condensation when the films are exposed to probe vapor at controlled partial vapor pressures. The probe solvent partial pressure was varied by mixing saturated air and dry air at constant temperature or by changing sample temperature at a constant vapor concentration. Pore size distribution in the films can be calculated from the probe uptake with typical porosimetric approaches such as the application of the Kelvin equation to convert partial pressure into pore size. For illustration, the pore size distribution of three different nanoporous thin films, the primary candidate of ultra‐low‐k interlevel dielectrics in the next generation of integrated circuit chips, was determined with this technique. These samples represent different generations of low‐k dielectrics developed by industry. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2170–2177, 2002  相似文献   

3.
Low dielectric constant (low-k) nanocomposite thin films have been prepared by spin coating and thermal cure of solution mixtures of one of two organic low-k thermoset prepolymers and a silica nanoparticle with an average diameter of about 8 nm. The electrical, the mechanical, and the thermomechanical properties of these low-k nanocomposite thin films have been characterized with 4-point probe electrical measurements, nanoindentation measurements with an atomic force microscope, and specular X-ray reflectivity. Addition of the silica nanoparticle to the low-k organic thermosets enhances both the modulus and the hardness and reduces the coefficient of thermal expansion of the resultant nanocomposite thin films. The enhancements in the modulus of the nanocomposite thin films are less than those predicted by the Halpin-Tsai equations, presumably due to the relatively poor interfacial adhesion and/or the aggregation of the hydrophilic silica nanoparticles in the hydrophobic organic thermoset matrices. The addition of the silica nanoparticle to the low-k organic thermoset matrices increases the relative dielectric constant of the resultant nanocomposite thin films. The relative dielectric constant of the nanocomposite thin films has been found to agree fairly well with an additive formula based on the Debye equation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1482–1493, 2007  相似文献   

4.
低介电多孔薄膜的制备及形成机制研究   总被引:3,自引:0,他引:3  
摘要利用硅烷偶联剂KH-570(γ-甲基丙烯酰氧基甲氧基硅烷)水解缩合生成的多面低聚倍半硅氧烷(POSS)溶胶为模板剂, 经热解制备低介电多孔薄膜材料. 使用FTIR对材料制备过程及形成机制进行动态研究, 通过 29Si NMR、 椭偏仪、 氮气吸脱附曲线和TEM等对材料的介电性质、 孔洞大小和分布情况进行表征. 制备的介电多孔薄膜材料孔洞分布均匀、 孔径约1 nm, 比表面积为384.1 m2/g, 介电常数为2.5的低.  相似文献   

5.
PZT films with different microstructure and Zr:Ti ratios were fabricated on ITO/glass and platinized silicon wafer substrates by dip-coating. A dense film of 2% porosity and a porous film of 19% porosity were obtained by repetition of thin and thick coatings, respectively. Development of pores during heating the film was examined and heating process factors were investigated. In the film fabricated on ITO/glass substrates, an existence of non-perovskite and low permittivity layer was confirmed by measurement of film thickness dependence of the dielectric constant. Among the films studied, the film with molar composition of Ti:Zr = 5:5 exhibited the largest dielectric constant and apparent piezoelectric coefficient, d 33, though the values were small. Apparent piezoelectric coefficients of d 33 and g 33 of the porous films were larger than those of the dense films.  相似文献   

6.
A low temperature route to crystalline titania nanostructures in thin films is presented. The synthesis is performed by the combination of sol‐gel processes, using a novel precursor for this kind of application, an ethylene glycol‐modified titanate (EGMT), and the structure templating by micro‐phase separation of a di‐block copolymer. Different temperatures around 100 °C are investigated. The nanostructure morphology is examined with scanning electron microscopy, whereas the crystal structure and thin film compositions are examined by scattering methods. Optoelectronic measurements reveal the band‐gap energies and sub‐band states of the titania films. An optimum titania thin film is created at temperatures not higher than 90 °C, regarding sponge‐like morphology with pore sizes of 25–30 nm, porosity of up to 71 % near the sample surface, and crystallinity of titania in the rutile phase. The low temperature during synthesis is of high importance for photovoltaic applications and renders the resulting titania films interesting for future energy solutions.  相似文献   

7.
Novel nanoporous thermosetting films were obtained from thermostable polycyanurate (PCN)-based hybrid networks synthesized by polycyclotrimerization of cyanate ester of bisphenol E in the presence of a modifier reactive toward cyanate groups, i.e. dihydroxy-telechelic poly(ε-caprolactone) (PCL). The nanoporous structure was generated in PCN/PCL hybrid networks after extraction of unreacted free PCL sub-chains which were not chemically incorporated into the PCN cross-linked framework. Structure–property relationships for precursory and porous PCN/PCL hybrid networks were investigated using a large array of physico-chemical techniques. The porosity associated with the networks after extraction was more particularly evaluated by SEM and DSC-based thermoporometry: pore sizes around 10–90 nm were determined along with pore volumes as high as about 0.3 cm3 g−1. Density and dielectric measurements strongly suggested the occurrence of closed pore structures. Due to their high thermal stability as investigated by TGA, nanoporous PCN/PCL hybrid cross-linked films could be considered as promising materials for potential applications as thermostable membranes.  相似文献   

8.
MgO thin films with either (111) or (200) preferential orientation have been prepared on (100) Si substrates by sol-gel method after a heat-treatment at 800°C. The obtained (111) preferentially oriented MgO film has a dielectric constant of 7.0 with a loss factor of 5% and a dielectric strength higher than 8 × 105 V/cm. The optical refractive index, which depends on the film thickness, is 1.71 when the film thickness is 260 nm. The surface structure of the Si substrate is believed to affect the preferential orientation of the sol-gel derived MgO film. Specifically, the microstructures at the interface indicate an interdiffusion of Mg, O, and Si between the film and the substrate.  相似文献   

9.
The optical properties of spin-coated titanium dioxide films have been tuned by introducing mesoscale pores into the inorganic matrix. Differently sized pores were templated using Pluronic triblock copolymers as surfactants in the sol-gel precursor solutions and adjusted by varying the process parameters, such as the polymer concentration, annealing temperature, and time. The change in refractive index observed for different mesoporous anatase films annealed at 350, 400, or 450 °C directly correlates with changes in the pore size. Additionally, the index of refraction is influenced by the film thickness and the density of pores within the films. The band gap of these films is blue-shifted, presumably due to stress the introduction of pores exerts on the inorganic matrix. This study focused on elucidating the effect different templating materials (Pluronic F127 and P123) have on the pore size of the final mesoporous titania film and on understanding the relation of varying the polymer concentration (taking P123 as an example) in the sol-gel solution to the pore density and size in the resultant titania film. Titania thin film samples or corresponding titanium dioxide powders were characterized by X-ray diffraction, cross-section transmission electron microscopy, nitrogen adsorption, ellipsometery, UV/vis spectrometry, and other techniques to understand the interplay between mesoporosity and optical properties.  相似文献   

10.
三甲基氯硅烷对纳米多孔二氧化硅薄膜的修饰   总被引:14,自引:0,他引:14  
王娟  张长瑞  冯坚 《物理化学学报》2004,20(12):1399-1403
以正硅酸乙酯为先驱体,采用溶胶-凝胶法,结合旋转涂胶、超临界干燥工艺在硅片上制备了纳米多孔SiO2薄膜.用三甲基氯硅烷(TMCS)对该SiO2薄膜进行了表面修饰,采用FTIR、TG-DTA、AFM和椭偏仪等方法研究了TMCS修饰前后薄膜的结构、形貌、厚度与介电常数等性能.超临界干燥后的SiO2薄膜含有Si-O-Si与Si-OR结构,呈疏水性.在空气中250 ℃以上热处理后SiO2薄膜因含有Si-OH而呈吸水性. TMCS修饰后的SiO2薄膜在温度不高于450 ℃时可保持其疏水性和多孔结构. SiO2薄膜经TMCS修饰后基本粒子和孔隙尺寸增大,孔隙率提高,介电常数可降低至2.5以下.  相似文献   

11.
Synthesis of Transparent Mesoporous and Mesostructured Thin Silica Films   总被引:2,自引:0,他引:2  
A novel method for obtaining crack-free transparent periodic mesoporous thin films is described. Such films are prepared by a simple sol-gel process using surfactants as templates, with a pre-treatment of the glass substrate. The silicate precursor (tetraethoxysilane) is pre-hydrolyzed under acidic conditions before dissolving directly cetyltrimethylammonium bromide (CTAB). The solution is then spin-coated on pre-treated glass substrate. After the film has been deposited, it is calcined in air. X-ray Diffraction (XRD) has been used to characterize the film before and after thermal treatment. The film consists of a nanocomposite material with a periodic structure. Before calcination the XRD pattern has a sharp peak at d = 3.8 nms which is broadened and shifted by about 3.0 nm after calcination. Infrared transmission spectra have been performed on the films. Analysis of the free OH group stretching vibration indicates the removal of the surfactant after calcination in addition to an enhancement of the specific surface area.  相似文献   

12.
Low-k periodic mesoporous organosilica with air walls: POSS-PMO   总被引:1,自引:0,他引:1  
Periodic mesoporous organosilica (PMO) with polyhedral oligomeric silsesquioxane (POSS) air pockets integrated into the pore walls has been prepared by a template-directed, evaporation-induced self-assembly spin-coating procedure to create a hybrid POSS-PMO thin film. A 10-fold increase in the porosity of the POSS-PMO film compared to a reference POSS film is achieved by incorporating ~1.5 nm pores. The increased porosity results in a decrease in the dielectric constant, k, which goes from 2.03 in a reference POSS film to 1.73 in the POSS-PMO film.  相似文献   

13.
Tetraethylorthosilicate (TEOS) is added to a pure-silica-zeolite MEL nanoparticle suspension and the mixture is subsequently used for preparing spin-on low-dielectric constant (low-k) films. The films are then characterized by ellipsometric porosimetry, transmission electron microscopy (TEM), and nanoindentation. Investigation into the film microstructure indicates that the addition of TEOS significantly increases the fraction of the crystalline domains, decreases the inter-crystal mesopore size, and narrows the pore size distribution. Films with 12% TEOS loading have a mean pore size distribution centered at 3.5 nm (diameter) with a full width at half maximum (fwhm) of 0.8 nm, while those with no TEOS have a distribution at 11.1 nm and fwhm of 7.9 nm. At 12% TEOS loading, the reduced modulus and hardness are 11.0 and 1.12 GPa, respectively; without TEOS, the values are 6.4 and 0.57 GPa.  相似文献   

14.
The present state of our knowledge on sol-gel coating films has been reviewed. A qualitative discussion is made on the limit of the film thickness which can be achieved in the sol-gel method and the factors affecting the film thickness. Considering that properties of the film are intimately related to the microstructure, types of microstructures accomplished by the sol-gel coating are introduced with examples.  相似文献   

15.
Mesoporous platinum–palladium alloy films with different compositional ratios have been successfully synthesized by electrochemical plating in aqueous surfactant solutions. Scanning electron micrographs and transmission electron micrographs reveal that all of the platinum–palladium alloy films possess uniform mesopores with a narrow size distribution (around 7 nm). The alloy compositions in the pore walls can be controlled by changing the compositional ratios in the precursor solutions, as confirmed by inductively coupled plasma mass spectroscopy analysis and X‐ray photoelectron spectroscopy measurements. Due to large surface areas, the prepared mesoporous platinum–palladium films show distinctly enhanced electrocatalytic activity for methanol oxidation reactions, compared with the commercially available platinum black catalyst. Furthermore, compared with mesoporous platinum film, the alloying of platinum with palladium has a critical effect on the enhanced electrocatalytic activity. In particular, a mesoporous Pt82–Pd18 film exhibits highly enhanced electrocatalytic activity.  相似文献   

16.
Photochromic silica based organic-inorganic hybrid materials containing covalently linked cyanoazobenzene chromophores were investigated by optical and dielectric spectroscopy. These materials, obtained via sol-gel process, were deposited onto glass substrates by spin coating technique to achieve thin transparent films. To investigate photoinduced alignment, the UV-Vis absorption spectra of the sol-gel films were recorded under illumination with linearly polarized blue light. Dielectric relaxation spectroscopy revealed a variety of relaxation processes: the α-process related to the dynamic glass transition temperature located around 150°C, and an Arrhenius-type β-relaxation (activation energy 58–60 kJ/mol) that was assigned to orientational fluctuations involving the azobenzene group. The correspondence between dielectric and photochemical behavior was discussed.  相似文献   

17.
The structure and properties of a polypropylene microporous film prepared by biaxial stretching of non-porous polypropylene film of high β-crystal content were investigated. The porosity of these films can be as high as 30–40%, and the average pore size was around 0.05 μm. The films were found to have the structure of a two-phase interpenetrating network; both the polypropylene and the pore regions were three-dimensionally continuous. The advantages of the biaxially stretched microporous films are the combination of high permeability to fluids with good mechanical properties and almost circular pore shape with narrow pore size distribution. The application of this microporous film for battery separators, filtration membranes and substrates of functional polymer composites is discussed.  相似文献   

18.
Thin films of poly(p-phenylene biphenyltetracarboximide) (BPDA-PDA), prepared by thermal imidization of the precursor poly(amic acid) on substrates, have been investigated by optical waveguide, ultraviolet-visible (UV-VIS), infrared (IR), and dielectric spectroscopies. The polyimide films exhibit an extraordinarily large anisotropy in the refractive indices with the in-plane index n = 1.806 and the out-of-plane index n = 1.589 at 1064 nm wavelength. No discernible effect of the film thickness on this optical anisotropy is found between films of ca. 2.1 and ca. 7.8 μm thickness. This large birefringence is attributed to the preferential orientation of the biphenyltetracarboximide moieties with their planes parallel to the film surface, coupled with the strong preference of BPDA-PDA chains to align along the film plane. The frequency dispersion of the in-plane refractive index n is consistent with the results calculated by the Lorentz–Lorenz equation from the UV-visible spectrum exhibiting several absorption bands in the 170–500 nm region. The contribution from the IR absorption in the range 7000–400 cm,?1 computed by the Spitzer-Kleinmann dispersion relations from the measured spectra, adds ca. 0.046 to the in-plane refractive index n. Tilt-angle–dependent polarized IR results indicate nearly the same increase for the out-of-plane index n. Application of the Maxwell relation then leads to the out-of-plane dielectric constant ε ? 2.7 at 1.2 × 1013 Hz, as compared with the measured value of ca. 3.0 at 106 Hz. Assuming this small difference to remain the same for the in-plane dielectric constants ε, we obtain a very large anisotropy in the dielectric properties of these polyimide films with the estimated in-plane dielectric constant ε ? 3.4 at 1.2 × 1013 Hz, and ε ? 3.7 at 106 Hz. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
IntroductionMoore’slaw ,namedaftertheformerCEOofIntel,statesthatthecomputingpowerofchipmanu facturingdoublesevery 18months(sincethe 196 0sthishasheldtobetrue) .Thisimprovementinperfor manceisachievedbycontinuallyshrinkingthedevicesizeandsoincreasingthespeedan…  相似文献   

20.
In this paper, silica microspheres were used as template to prepare porous fluorinated polyimide (FPI) thin films from polyamic acid (PAA, precursor of FPI) and silica colloid solution. The strong hydrogen-bonding interaction between silica microspheres and PAA chains have improved the dispersion of silica microspheres in N,N-Dimethylformamide (DMF) solution, resulting in the high weight content of silica template in PAA/silica colloid solution, and thus giving rise to the formation of porous FPI films with maximum porosity of 35%. The interior microstructures of the resultant porous FPI thin films were investigated. It is found that the porous FPI thin films have interconnected “ink-bottle-type” porous structure, and the pore size, porosity could be precisely controlled by the diameter and weight content of silica microspheres, respectively. Although both the tensile strength and young modules declined with the increasing porosity, the high level void of the porous FPI films endowed the FPI ultralow dielectric constant of 1.84 when the porosity increased to 35%. Furthermore, the mechanical and dielectric properties of the porous FPI films were closely related to the microstructures and porosity, indicating the desired properties could be controlled to meet the application in the microelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号