首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymine-functionalized SAM-protected gold nanoparticles with diameters of 2.2 +/- 0.3 nm and 7.0 +/- 1.0 nm were prepared via a modified two-phase transfer method. UV-vis spectra showed that particle size and solvent type, as well as surface charge, influenced the gold surface plasmon band absorption, along with the interaction between thymine terminal groups in the solution. Although the bulky thymine end groups interacted strongly on the particle surface, a well-ordered monolayer of thyminethiol derivatives with a long hydrocarbon chain was formed on the particle surface, exhibiting an ordered, all-trans conformation of the methylene backbone, similar to those of corresponding self-assembled monolayers (SAMs) generated from normal alkanethiols. A larger particle size and a longer reaction time facilitated the formation of more ordered thymine-terminated thiol SAMs. Thermal analysis indicated that reorientation of the SAMs during heat treatment occurred by two processes, caused possibly by the separate recrystallization of the hydrocarbon long chains and thymine units. More ordered SAMs with a higher thermal stability were formed on the larger particle surfaces when compared with those on the smaller ones. A greater density of molecular packing was found on the smaller particle surfaces. However, SAMs formed on the larger gold particles resembled 2D SAMs on the smooth, flat gold surfaces. XPS results confirmed the thymine structure as well as the chemical bond between gold and sulfur. One type of adsorbed sulfur species was observed for the smaller particles and two for the larger ones, but a slightly higher binding energy of thiolate was found for the smaller ones.  相似文献   

2.
Irradiation of UV light to the solution of gold nanoparticles modified with thymine units resulted in the formation of aggregates comprising chemical cross-linking gold nanoparticles through the photodimerization of the thymine units. Transmission electron microscopy and UV-visible absorption measurement showed the aggregates consisting of the gold nanoparticles. The effect of thymine unit density on the nanoparticle surface and the concentration of the gold nanoparticles in solution to the aggregation process were studied by UV-visible absorption measurement.  相似文献   

3.
Gold nanoparticles surface-coated with thyminethiol derivatives containing long hydrocarbon chains have been prepared. The diameter of the particles is 2.2 and 7.0 nm, respectively, with a relatively narrow size distribution. Thyminethiol derivatives are attached to the gold particle surfaces with thymine moieties as the end groups. The colloid stability of the gold nanoparticles as a function of the type and concentration of monovalent salt, pH, and particle size was investigated in alkaline, aqueous solutions. The gold particles are stable in concentrated NaCl and KCl solutions, but are unstable in concentrated LiCl and CsCl solutions. The larger gold particles are more sensitive to salt concentration and aggregate at lower salt concentrations. The reversible aggregation and dispersion of the gold particles can be controlled by changing the solution pH. The larger gold particles can be dispersed at higher pH and aggregate faster than the smaller particles, due to stronger van der Waals forces between the larger particles. Hydration forces play an important role in stabilizing the particles under conditions where electrostatic forces are negligible. The coagulation of the gold nanoparticles is attributed to van der Waals attraction and reduced hydration repulsion in the presence of LiCl and CsCl.  相似文献   

4.
A novel light‐induced reversible self‐assembly (LIRSA) system is based on the reversible photodimerization and photocleavage of coumarin groups on the surface of gold nanoparticles (AuNPs) in THF solution. Facilitated by coumarin groups, light irradiation at 365 nm triggers the stable assembly of monodisperse AuNPs; the resulting self‐assembly system can be disassembled back to the disassembled state by a relatively short exposure to benign UV light. The reversible self‐assembly cycle can be repeated 4 times. A specific concentration range of coumarin ligand and the THF solvent were identified to be the two predominant factors that contribute to the LIRSA of AuNPs. This is the first successful application of reversible photodimerization based on a coumarin derivative in the field of AuNP LIRSA. This LIRSA system may provide unique opportunities for the photoregulated synthesis of many adjustable nanostructures and devices.  相似文献   

5.
Abstract. Photodimerization of thymine in aqueous solution in the presence of tyrosine was studied with monochromatic UV irradiation. The total dimer formation was sensitized in the presence of tyrosine. The action spectrum of sensitized total dimer formation has a peak near 280 nm corresponding to the absorption maximum of tyrosine. Triplet quenchers reduced the sensitization substantially. It seems probable that tyrosine-sensitized photodimerization of thymine occurred via triplet-triplet energy transfer from tyrosine to thymine.  相似文献   

6.
We describe the synthesis and photochemistry of coumarin-functionalized silica nanoparticles, which were prepared utilizing 7-[3-(triethoxysilyl)propanyloxy]coumarin (TPC) to attach coumarin as a photoactive group to the silica nanoparticle surface. The nanoparticle size and morphology were investigated by scanning electron microscopy, atomic force microscopy, and dynamic light scattering. The diameter of the spherical nanoparticles was determined by all three methods to be about 40 nm. The surface functionalization was characterized in the bulk by ζ-potential measurements and on the single-nanoparticle level by electrostatic force microscopy, where the difference in surface potential between TPC-modified and unmodified silica nanoparticles is measured. The degree of surface functionalization was determined by thermogravimetric analysis (TGA), and a theoretical limit of about 23,000 coumarin entities per nanoparticle was calculated. The photochemistry, and its reversibility, of the nanoparticle-attached coumarin entities was found to be quite different from the coumarin photochemistry in solution or on flat surfaces. Photodimerization with light of 355 nm and photocleavage with light of 254, 266, and 280 nm were analyzed by absorption and fluorescence spectroscopy. Following several cycles of photodimerization and photocleavage showed that the absorption change at 320 nm decreases from cycle to cycle. The coumarin layer on the nanoparticles was proven to be unchanged by TGA. The apparent loss of absorption change is due to the formation of interlinked nanoparticles during the dimerization-cleavage cycles. Because the coumarin groups on the inside of the obtained nanoparticle clusters are inaccessible to light, the amount of "uncleavable" dicoumarins increases, thus lowering the obtainable absorption change from cycle to cycle.  相似文献   

7.
Photochemical synthesis of gold nanoparticles in aqueous dispersions of carboxylated polystyrene with microsphere sizes of 100, 300, 500, and 1410 nm under the action of monochromatic light with an excitation wavelength of 254 nm was studied. Preliminary irradiation of the polymer dispersion induces formation of gold particles under dark conditions. Dependences of gold nanoparticles formation on the duration of preliminary polymer irradiation and concentration of introduced HAuCl4 aqueous solution were determined. A mechanism of the polystyrene-assisted formation of gold nanoparticles was proposed. The size and structure of gold nanoparticles were determined.  相似文献   

8.
Colloidal gold (Au) nanoparticles were prepared and successfully loaded on titanium(IV) oxide (TiO(2)) without change in the original particle size using a method of colloid photodeposition operated in the presence of a hole scavenger (CPH). The prepared Au nanoparticles supported on TiO(2) showed strong photoabsorption at around 550 nm due to surface plasmon resonance (SPR) of Au and exhibited a photocatalytic activity in mineralization of formic acid in aqueous suspensions under irradiation of visible light (>ca. 520 nm). A linear correlation between photocatalytic activity and the amount of Au loaded, that is, the number of Au nanoparticles, was observed, indicating that the activity of Au/TiO(2) plasmonic photocatalysts can be controlled simply by the amount of Au loading using the CPH method and that the external surface area of Au nanoparticles is a decisive factor in mineralization of formic acid under visible light irradiation. Very high reaction rates were obtained in samples with 5 wt % Au or more, although the rate tended to be saturated. The CPH method can be widely applied for loading of Au nanoparticles on various TiO(2) supports without change in the original size independent of the TiO(2) phase. The rate of CO(2) formation also increased linearly with increase in the external surface area of Au. Interestingly, the TiO(2) supports showed different slopes of the plots. The slope is important for selection of TiO(2) as a material supporting colloidal Au nanoparticles.  相似文献   

9.
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.  相似文献   

10.
Formation and aggregation of photolytic gold nanoparticles at the surface of chitosan (CTO) films have been investigated. When thin films of chloroauric acid salt of CTO were irradiated with UV light in wet air at room temperature for 10 min, gold nanoparticles of approximately 10 nm size are formed at the film surface. Detailed X-ray photoelectron spectroscopy (XPS) study and field emission type scanning electron microscopy (FE-SEM) observation have been carried out to characterize gold nanoparticles at the film surface. The shift of Au(4f) peak to the higher energy side and broadening of full width at half-maximum in the XPS spectrum are the direct evidence of the existence of gold atoms and small clusters in the early stage of photolysis. According to FE-SEM observation, growth in the particle diameter and aggregation of nanoparticles were observed after prolonged irradiation, and, finally, the film surface was densely covered with gold particles of 20-100-nm size. Gold atoms and clusters could move in the film and precipitate to the irradiated surface. Chemical composition analysis further suggests that gold particles at the surface are covered with an ultrathin CTO layer, which is partly oxidized by oxygen and chlorinated by chlorine during photochemical reactions.  相似文献   

11.
刺激响应性表面图案赋予了材料动态可调的表面性能,是智能材料领域研究的热点,然而如何通过简单有效的方法构建这类动态表面图案也是该领域的难点.本文将动态硼酸酯键和光可逆二聚基团引入到聚醚胺(PEA)交联网络中,通过双层褶皱体系构建一系列具有光和湿度刺激响应性表面褶皱图案.在365 nm紫外光照和加热的条件下,蒽基团(AN)的光二聚与硼酸键的形成使得上表层聚醚胺模量变大,产生微米级表面褶皱图案;在254 nm紫外光照射或水蒸气作用下,聚醚胺网络解交联,表面褶皱图案消失;利用光化学时空分辨的特性,通过光掩膜板光照还可以制备多层次动态表面褶皱图案.这种多重刺激响应性表面褶皱图案为构建智能聚合物表面提供了新思路,在传感和防伪等领域具有潜在的应用前景.  相似文献   

12.
Composite materials consisting of nanoscale gold particles and protective polymer shells were designed and tested as catalysts in various chemical reactions. Initially, the systematic incorporation of multiple gold nanoparticles into a poly(N-isopropylacrylamide) particle was achieved by an in situ method under light irradiation. The degree of gold nanoparticle loading, along with the structural and morphological properties, was examined as a function of the amount of initial gold ions and reducing agent. As these gold nanoparticles were physically-embedded within the polymer particle in the absence of strong interfacial interactions between the gold nanoparticles and polymer matrix, the readily-accessible surface of the gold nanoparticles with a highly increased stability allowed for their use as recyclable catalysts in oxidation, reduction, and coupling reactions. Overall, the ability to integrate catalytically-active metal nanoparticles within polymer particles in situ allows for designing novel composite materials for multi-purpose catalytic systems.  相似文献   

13.
Loading of HAuCl4 in poly(amido amine) G4 dendrimers having poly(ethylene glycol) (PEG) grafts at all chain ends and subsequent reduction with NaBH4 yielded PEG-modified dendrimers encapsulating gold nanoparticles (Au NPs) of ca. 2 nm diameter. The Au NPs held in the dendrimers were stable in aqueous solutions and dissolved readily, even after freeze-drying. Despite their small particle size, the heat-generating ability of Au NPs held in the dendrimer was comparable to that of widely used Au NPs with ca. 11 nm diameter under visible light irradiation. The observed excellent colloidal stability, high heat-generating ability and their biocompatible surface confirm that the PEG-modified dendrimers encapsulating Au NPs are a promising tool for photothermal therapy and imaging.  相似文献   

14.
We newly synthesized various sized gold nanoparticles covered with photochromic polymers consisting of diarylethenes with various structures to investigate an effect of the gold nanoparticles on the photocycloreversion reaction of the diarylethene chromophores upon irradiation with visible light. The gold nanoparticles covered with the photochromic polymers exhibited reversible changes in localized surface plasmon resonance (LSPR) absorption along with the photochromic reaction depending on the diameter of the particle, the distance between the gold surface and the chromophore, and the structure of the diarylethene chromophore. The rate of the photocycloreversion reaction of the chromophores around the particle was enhanced by the gold nanoparticles and the degree of the enhancement was affected by the diameter of the particle and the distance from the gold surface, while a structural difference in the diarylethene chromophore had no effect on the degree of the enhancement. The larger enhancement of the photocycloreversion reaction was observed by irradiation at longer wavelength side than visible light corresponding to the LSPR frequency.  相似文献   

15.
Purpose of the present research work was to evaluate the biological distribution of differently size gold nanoparticles (NP) up on intravenous administration in mice. Another objective was to study effect of particle size on biological distribution of gold NP to enable their diverse applications in nanotechnology. Gold NP of different particle sizes, mainly 15, 50, 100 and 200nm, were synthesized by modifying citrate ion concentration. Synthesized gold nanoparticles were characterized by SEM and their size distribution was studied by particle size analyzer. Gold NP was suspended in sodium alginate solution (0.5%, w/v) and administered to mice (1g/kg, intravenously) [n=3]. After 24h of administration of gold NP, blood was collected under light ether anesthesia, mice were sacrificed by cervical dislocation and various tissues/organs were removed. The tissues were then washed with saline, homogenized and lysed with aqua regia. The determination of gold in samples was carried out quantitatively by inductively coupled plasma mass spectrometry (ICP-MS). SEM study revealed spherical morphology of gold NP with narrow particle size distribution. Biodistribution study revealed gold NPs of all sizes were mainly accumulated in organs like liver, lung and spleen. The accumulation of gold NP in various tissues was found to be depending on particle size. 15nm gold NP revealed higher amount of gold and number of particles in all the tissues including blood, liver, lung, spleen, kidney, brain, heart, stomach. Interestingly, 15 and 50nm gold NP were able to pass blood-brain barrier as evident from gold concentration in brain. Two-hundred nanometers gold NP showed very minute presence in organs including blood, brain, stomach and pancreas. The results revealed that tissue distribution of gold nanoparticles is size-dependent with the smallest 15nm nanoparticles showing the most widespread organ distribution.  相似文献   

16.
Size reduction of metal nanoparticles increases the exposure of metal surfaces significantly, favoring heterogeneous chemistry at the surface of the nanoparticles. The optical properties of metal nanoparticles, such as light absorption, also exhibit a strong dependence on their size. It is expected that there will be strong coupling of light absorption and surface chemistry when the metal nanoparticles are small enough. For instance, metal nanoparticles with sizes in the range of 2–10 nm exhibit both surface plasmon resonances, which can efficiently produce high-energy hot electrons near the surface of the nanoparticles under light illumination, and the Coulomb blockade effect, which favors electron transfer from the metal nanoparticles to the surface adsorbates. The synergy of efficient hot electron generation and electron transfer on the surface of small metal nanoparticles leads to double-faced effects: (i) surface (adsorption) chemistry influences optical absorption in the metal nanoparticles, and (ii) optical absorption in the metal nanoparticles promotes (or inhibits) surface adsorption and heterogeneous chemistry. This review article focuses on the discussion of typical quantum phenomena in metal nanoparticles of 2–10 nm in size, which are referred to as “quantum-sized metal nanoparticles”. Both theoretical and experimental examples and results are summarized to highlight the strong correlations between the optical absorption and surface chemistry for quantum-sized metal nanoparticles of various compositions. A comprehensive understanding of these correlations may shed light on achieving high-efficiency photocatalysis and photonics.

Size reduction of metal nanoparticles increases the exposure of metal surfaces significantly, favoring heterogeneous photochemistry at the surface of the nanoparticles.  相似文献   

17.
Gold nanoparticles supported on P25 titania (Au/TiO(2)) exhibit photocatalytic activity for UV and visible light (532 nm laser or polychromatic light λ > 400 nm) water splitting. The efficiency and operating mechanism are different depending on whether excitation occurs on the titania semiconductor (gold acting as electron buffer and site for gas generation) or on the surface plasmon band of gold (photoinjection of electrons from gold onto the titania conduction band and less oxidizing electron hole potential of about -1.14 V). For the novel visible light photoactivity of Au/TiO(2), it has been determined that gold loading, particle size and calcination temperature play a role in the photocatalytic activity, the most active material (Φ(H2) = 7.5% and Φ(O2) = 5.0% at 560 nm) being the catalyst containing 0.2 wt % gold with 1.87 nm average particle size and calcined at 200 °C.  相似文献   

18.
Gold nanoparticles were surface modified with an ionizable and pH-sensitive monolayer of thiobarbituric acid (TBA). By variation of the pH value of the solution, nanoparticle aggregates can be produced in a controlled way. The aggregates thus prepared were irradiated with an intense pulsed laser at 532 nm. The products in solution were examined by transmission electron microscopy (TEM) and optical absorption spectroscopy. The TEM images of the products revealed that the nanoparticle aggregates dissociate upon laser irradiation and form much smaller gold nanoparticles. The optical absorption spectra measured simultaneously show the gradual disappearance of the absorbance band of the aggregates at around 680 nm. Additionally, a blue shift (from 534 to 524 nm) of the resonance absorbance corresponding to isolated nanoparticles has been observed. All the observations suggest that the colloidal solution becomes more stable after laser irradiation. Both the reduced nanoparticle size and the stabilizing TBA ligands present on the particle surface contribute to the acquired stability of the colloidal solutions.  相似文献   

19.
We report the synthesis of pentagonal- and hexagonal-shaped gold nanoparticles with controlled diameters ranging from 5 to 50 nm. These nanoparticles were prepared by a seeding growth approach. Sodium dodecyl sulfate (SDS) molecules served as the capping agent to restrict the particle size. In addition, the formation of highly faceted gold nanoparticles may be facilitated by the possibly ineffective capping interactions between the lamellar micellar structures formed by the SDS molecules and the gold nanoparticles. The crystal structure of the highly faceted particles was found to consist of mostly [111] surfaces as particle size increases, as revealed by both TEM and XRD results.  相似文献   

20.
The influence of pH value on gold nanoparticle production in the presence of Pluronic stabilizers is systematically investigated. The reactions are studied as a function of pH and at fixed concentrations of the two reactants, HAuCl(4) and P123 block copolymer. Results indicate that the reaction pathway during the nanoparticle formation can be controlled by varying pH. The nanoparticles synthesized at pH=11.12 have an average diameter of 9.6 nm with a narrow size distribution, and the Pluronics are adsorbed on individual gold particle surfaces to form core-shell structures via hydrophobic interactions. The present work provides an economic way to improve the dispersion and stabilization of gold nanoparticles and throws further light on the understanding of gold nanoparticle production using block copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号