首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用广义指数模型描述软胶体粒子, 结合分子动力学模拟研究软胶体粒子形成束晶的动力学过程. 通过等温压缩和等密度降温2个不同的过程, 研究了束晶形成过程中结构变化特征和动力学路径对结构的影响规律. 研究发现, 与蒙特卡洛模拟结果相比, 分子动力学模拟得到的结构随着密度的变化有明显的迟滞现象, 这是由于考虑了真实的动力学因素引起的差异. 此外, 在相同温度和压力下通过不同的动力学路径得到的相结构不完全相同, 这是由于动力学形成过程会对相结构产生很大的影响.  相似文献   

2.
A detailed investigation of the phase diagram of 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF(6)]) is presented on the basis of a wide set of experimental data accessing thermodynamic, structural, and dynamical properties of this important room temperature ionic liquid (RTIL). The combination of quasi adiabatic, continuous calorimetry, wide angle neutron and X-ray diffraction, and quasi elastic neutron scattering allows the exploration of many novel features of this material. Thermodynamic and microscopic structural information is derived on both glassy and crystalline states and compared with results that recently appeared in the literature allowing direct information to be obtained on the existence of two crystalline phases that were not previously characterized and confirming the view that RTILs show a substantial degree of order (even in their amorphous states), which resembles the crystalline order. We highlight a strong connection between structure and dynamics, showing the existence of three temperature ranges in the glassy state across which both the spatial correlation and the dynamics change. The complex crystalline polymorphism in [bmim][PF(6)] also is investigated; we compare our findings with the corresponding findings for similar RTILs. These results provide a strong experimental basis for the exploration of the features of the phase diagram of RTILs and for the further study of longer alkyl chain salts.  相似文献   

3.
The influence of molecular weight on thermal transitions and on their thermodynamic parameters is discussed for a random thermotropic liquid crystalline copolyether based on the reaction of a 1:1 molar mixture of 1,5-dibromopentane and 1,7-dibromoheptane with 4,4′-dihydroxy-α-methylstilbene. Optimum phase transfer catalyzed polyetherification reaction conditions were established for the synthesis of polymers containing bromoalkane chain ends only over a wide variety of molecular weights. All these copolyethers present a crystalline and an enantiotropic nematic mesophase over the entire range of molecular weights studied. Both the thermal transitions and their thermodynamic parameters are strongly molecular weight-dependent up to M n = 10,000–12,000, after which they remain constant. The enthalpies and entropies of isotropization of the copolyethers are higher than those of melting. This is in contrast to the same thermodynamic parameters of the corresponding homopolyethers. The enthalpies and entropies of isotropization of both homopolymers and copolymers present similar values, suggesting that copolymerization does decrease the degree of order in the crystalline phase but does not significantly change the alignment degree of the mesogenic units in the nematic mesophase.  相似文献   

4.
Molecular dynamics simulations demonstrate that there are at least two classes of quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer amorphous (or crystalline) ice, and monolayer ice phases at various thermodynamic conditions, then determine curves of melting, freezing, and solid-solid structural change on the isostress planes where temperature and intersurface distance are variable, and finally we propose a phase diagram of the confined water in the temperature-pressure-distance space.  相似文献   

5.
This paper presents the result of thermodynamic studies on Ge1−x Sn x Se2.5 (0 ≤ x ≤ 0.5) glasses using differential scanning calorimetry. The obtained experimental results on phase transformations have been employed to obtain thermodynamic parameters like entropy difference between metastable states in the glassy region, difference of Gibbs free energy, specific heat, entropy between the glassy and the crystalline phase and the enthalpy released during phase transformation (glassy to crystalline). The results yield that, Ge0.7Sn0.3Se2.5 sample is least stable among all the samples. The stability increases on addition of Sn beyond 0.3 at. mass% upto 0.5 at. mass%.  相似文献   

6.
The thermodynamic properties of lead, including the entropy, heat capacity, Gibbs free energy, and surface free energy have been studied. Based on bulk thermodynamic properties of lead, Gibbs free energy for nanostructural materials is obtained and used to calculate the size-dependent melting point depression for lead nanostructural materials. The studies indicate that the surface free energy difference between solid phase and liquid phase is a decisive factor for the size-dependent melting of nanostructural materials. The calculated results are in agreement with recent experimental values and the available molecular dynamics simulation data.  相似文献   

7.
We have investigated the catalytic transformation of ferrihydrite, feroxyhyte, and lepidocrocite in the presence of Fe(II). In this paper, the transformation from akaganeite and goethite to hematite in the presence of trace Fe(II) was studied in detail. The result indicates that trace Fe(II) can accelerate the transformation of akaganeite and goethite. Compared with the transformation of other iron oxyhydroxides (e.g., ferrihydrite, feroxyhyte, lepidocrocite, and akaganeite), a complete transformation from goethite to hematite was not observed in the presence of Fe(II). On the basis of our earlier and present experimental results, the transformation of various iron oxyhydroxides was compared based on their thermodynamic stability, crystalline structure, transformation mechanism, and transformation time.  相似文献   

8.
陈胜洲  邹其超  张金枝 《色谱》2002,20(1):12-15
 采用反气相法研究了苯乙烯 氧乙烯 苯乙烯三嵌段结晶聚合物 (PS PEO PS)的结晶熔融相变 ,测定了PS PEO PS的结晶度、熔点以及熔程 ,探讨了正构烷烃探针分子的碳链长度对测定结果的影响。研究结果表明 :PS PEO PS的微相分离对PEO链段的结晶行为有较大的影响 ,其晶体结构中存在由多种不完善PEO结晶和PS非结晶构成的中间层 ;正构烷烃探针分子的碳链长度对测定PS PEO PS的熔点和熔程无影响 ,但对结晶度测定和PEO结晶熔融相变的检测影响较大 ,所测得PS PEO PS的结晶度随正构烷烃探针分子碳链的增长而降低。  相似文献   

9.
The thermodynamic characteristics and selectivity of sorption of disubstituted benzene, pyridine, and naphthalene by the p-n-nonyloxybenzoyloxy-p′-cyanoazobenzene, p-n-hexyloxycinnamoyloxy-p′-cyanoazobenzene liquid crystalline phases and their mixture was studied by gas chromatography. The reentrant nematic phase of a mixture of mesogens was found to possess high selectivity to structural isomers. The results of manifestation of liquid crystalline phase selectivity are discussed on the basis of the enthalpy and entropy characteristics of solution of sorbates.  相似文献   

10.
In single-, double-, and triple-chain amphiphilic diols the CONH group was replaced by CON(CH3) in order to reduce the number of proton donor groups available for intermolecular hydrogen bonding. The resulting three new liquid crystalline diols were studied by DSC, X-ray and dielectric measurements, and show the mesophases SmA, ColH2 or CubI2, depending on the number of decyloxy groups in the hydrophobic part of the molecule. The process of self-assembly to different liquid crystalline phases is well seen in the dielectric spectrum and details of this process are discussed together with results from the X-ray measurements. All the compounds show a high frequency dielectric absorption caused by the dynamics of the network of hydrogen bonds. An additional low frequency process related to the internal dynamics of the columns is seen only in the columnar phase.  相似文献   

11.
Molecular dynamics and resulting disorder in the soft crystal, smectic E (SmE) phase, were studied in detail for the title compound, 4-butyl-4'-isothiocyano-1,1'-biphenyl (4TCB), by (1)H NMR spectroscopy and adiabatic calorimetry. The ordered crystal phase of 4TCB was realized for the first time under ambient pressure after long two-step annealing and used as the reference state in the analysis of the experimental results. Four motional modes were identified in the SmE phase through the analysis of the (1)H NMR T(1). The residual entropy was determined as ca. 6 J K(-1) mol(-1). This magnitude implies that most of the disorder in the SmE phase at high temperatures is removed on cooling except for the head-to-tail disorder of the rod-shaped 4TCB molecule. Standard thermodynamic functions are tabulated below 375 K.  相似文献   

12.
The dynamics of phase transformation due to homogeneous nucleation has long been analyzed using the classic Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. However, the dynamics of phase transformation due to heterogeneous nucleation has not been studied systematically even though it is vitally important technologically. In this report, the author studies the dynamics of heterogeneous nucleation theoretically and systematically using the phenomenological time-dependent Ginzburg-Landau (TDGL)-type model combined with the cell dynamics method. In this study the author focuses on the dynamics of phase transformation when the material is sandwiched by two supporting substrates. This model is supposed to simulate phase change storage media. Since both homogeneous and heterogeneous nucleations can occur simultaneously, the author predicts a few scenarios of phase transformation including homogeneous nucleation regime, heterogeneous nucleation regime, and the homogeneous-heterogeneous coexistence regime. These predictions are directly confirmed by numerical simulation using the TDGL model. The outcome of the study was that the KJMA formula has limited use when heterogeneous nucleation exists, but it could still give some information about the microscopic mechanism of phase transformation at various stages during phase transformation.  相似文献   

13.
Gelation mechanism is of utmost importance to the rational design of supramolecular hydrogelators. Although both kinetic and thermodynamic controlled self‐assembly processes have been widely studied in hydrogels, the formation relationship between crystalline and amorphous gel networks still remains ambiguous. Herein, a gelation transformation from a kinetic to a thermodynamic process was achieved by balancing the rigidity and flexibility of the inorganic–organic co‐assemblies. By using polyoxometalates and zwitterionic amphiphiles, the transition morphologies between crystalline and amorphous hydrogel networks were evidenced for the first time, as ordered wormlike micelles. Given the versatile applications of hydrogels in biological systems and materials science, these findings may highlight the potential of inorganic–organic binary supramolecular hydrogelators and fill in the blank between kinetic and thermodynamic controlled gelation processes.  相似文献   

14.
The synthesis and pressure–volume–temperature (PVT), differential thermal analysis (DTA), dielectric and X-ray diffraction data of 2-(4-octylcarbonyloxyphenyl)-5-decylpyrimidine (10PBO8) are presented. The substance exhibits two crystalline and smectic C (SmC) phases on heating and a SmC–monotropic crystalline smectic B (SmBcr) SmBcr–crystal sequence of phase transitions on cooling. Above ca. 15 MPa, the SmBcr phase becomes enantiotropic (reversible polymorphism). The phase behaviour and molecular dynamics in the liquid crystalline phases are analysed and discussed, with the conformational component of the total entropy for the SmC–isotropic liquid transition estimated. We also calculate from the PVT results the potential parameter characterising the steepness of the interaction potential.  相似文献   

15.
The quintessential form of cellulose in wood consists of microfibrils that have high aspect ratio crystalline domains embedded within an amorphous cellulose domain. In this study, we apply united-atom molecular dynamics simulations to quantify changes in different morphologies of cellulose. We compare the structure of crystalline cellulose with paracrystalline and amorphous phases that are both obtained by high temperature equilibration followed by quenching at room temperature. Our study reveals that the paracrystalline phase may be an intermediate, kinetically arrested phase formed upon amorphisation of crystalline cellulose. The quenched structures yield isotropic amorphous polymer domains consistent with experimental results, thereby validating a new computational protocol for achieving amorphous cellulose structure. The non-crystalline cellulose compared to crystalline structure is characterized by a dramatic decrease in elastic modulus, thermal expansion coefficient, bond energies, and number of hydrogen bonds. Analysis of the lattice parameters shows that Iβ cellulose undergoes a phase transition into high-temperature phase in the range of 450–550 K. The mechanisms of the phase transition elucidated here present an atomistic view of the temperature dependent dynamic structure and mechanical properties of cellulose. The paracrystalline state of cellulose exhibits intermediate mechanical properties, between crystalline and amorphous phases, that can be assigned to the physical properties of the interphase regions between crystalline and amorphous cellulose in wood microfibrils. Our results suggest an atomistic structural view of amorphous cellulose which is consistent with experimental data available up to date and provide a basis for future multi-scale models for wood microfibrils and all-cellulose nanocomposites.  相似文献   

16.
The influence of molecular weight on thermal transitions and on the thermodynamic parameters was studied for two polymers based on 4,4′-dihydroxy-α-methylstilbene with either 1,9-dibromononane (HMS-C9 polyethers) or 1,11-dibromoundecane (HMS-C11 polyethers). HMS-C9 polyethers present an enantiotropic nematic mesophase over the entire range of molecular weights and a monotropic smectic mesophase for polymers of number average molecular weights higher than 17,000. The low molecular weight HMS-C11 polyethers are only crystalline. On increasing their molecular weight, the polymers become monotropic nematics, and at higher molecular weights, enantiotropic nematics. Up to a composition containing as little as 20 mol % nonane structural units, the random copolyethers based on 1,9-dibromononane, 1,11-dibromoundecane, and 4,4′-dihydroxy-α-methylstilbene (HMS-C9/11 copolyethers) exhibit on cooling a phase diagram resembling that of HMS-C9 polyether. HMS-C9/11 containing about a 1/1 mole ratio between the two spacers presents both smectic and nematic enantiotropic mesophases. These results suggest that the phase diagram of random liquid crystalline copolymers is controlled by the shorter spacer. The thermodynamic parameters of isotropization for both polyethers and copolyethers are compared and suggest that copolymerization does not significantly decrease the degree of order of the mesogenic units in the mesomorphic phase.  相似文献   

17.
Side chain liquid crystalline polymer with relatively long spacer was modeled on a semiatomistic level and studied in different liquid crystalline phases with the aid of molecular dynamics simulations. Well equilibrated isotropic, polydomain smectic and monodomain smectic phases were studied for their structural and dynamic properties. Particular emphasis was given to the analysis on a coarse-grained level, where backbones, side chains, and mesogens were considered in terms of their equivalent ellipsoids. The authors found that the liquid crystalline phase had a minor influence on the metrics of these objects but affected essentially their translational and orientational order. In the monodomain smectic phase, mesogens, backbones, and side chains are confined spatially. Their diffusion and shape dynamics are frozen along the mesogen director (the one-dimensional solidification) and the reorientation times increase by one to one-and-half orders of magnitude. In this phase, besides obvious orientational order of mesogens and side chains, a stable detectable order of the backbones was also observed. The backbone director is confined in the plane perpendicular to the mesogen director and constantly changes its orientation within this plane. The backbone diffusion in these planes is of the same range as in the polydomain smectic phase at the same temperature. A detailed analysis of the process of field-induced growth of the smectic phase was performed. The study revealed properties of liquid crystalline polymers that may enable their future fully coarse-grained modeling.  相似文献   

18.
An important unsolved problem in materials science is prediction of the thermodynamic stability of organic crystals and their solubility from first principles. Solubility can be defined as the saturating concentration of a molecule within a liquid solvent, where the physical picture is of solvated molecules in equilibrium with their solid phase. Despite the importance of solubility in determining the oral bioavailability of pharmaceuticals, prediction tools are currently limited to quantitative structure-property relationships that are fit to experimental solubility measurements. For the first time, we describe a consistent procedure for the prediction of the structure, thermodynamic stability and solubility of organic crystals from molecular dynamics simulations using the polarizable multipole AMOEBA force field. Our approach is based on a thermodynamic cycle that decomposes standard state solubility into the sum of solid-vapor sublimation and vapor-liquid solvation free energies [Formula: see text], which are computed via the orthogonal space random walk (OSRW) sampling strategy. Application to the n-alkylamides series from aeetamide through octanamide was selected due to the dependence of their solubility on both amide hydrogen bonding and the hydrophobic effect, which are each fundamental to protein structure and solubility. On average, the calculated absolute standard state solubility free energies are accurate to within 1.1 kcal/mol. The experimental trend of decreasing solubility as a function of n-alkylamide chain length is recapitulated by the increasing stability of the crystalline state and to a lesser degree by decreasing favorability of solvation (i.e. the hydrophobic effect). Our results suggest that coupling the polarizable AMOEBA force field with an orthogonal space based free energy algorithm, as implemented in the program Force Field X, is a consistent procedure for predicting the structure, thermodynamic stability and solubility of organic crystals.  相似文献   

19.
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K. All these data, together with other physical and chemical properties, will be useful to predict the mobility and environmental distribution of these two compounds.  相似文献   

20.
The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号