首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The reaction of [Mn6O2(Piv)(10)(4-Me-py)(2.5)(PivH)(1.5)] (1) (py: pyridine, Piv: pivilate) with N-methyldiethanolamine (mdeaH2) and Ln(NO3)3 x 6 H2O in MeCN leads to a series of nonanuclear compounds [Mn5Ln4(O)6(mdea)2(mdeaH)2(Piv)6(NO3)4(H2O)2]2 MeCN (Ln=Tb(III) (2), Dy(III) (3), Ho(III) (4), Y(III) (5)). Single-crystal X-ray diffraction shows that compounds 2-5 are isostructural, with the central core composed of two distorted {Mn(IV)Mn(III)Ln2O4} cubanes sharing a Mn(IV) vertex, representing a new heterometallic 3d-4f motif for this class of ligand. The four new compounds display single-molecule magnet (SMM) behaviour, which is modulated by the lanthanide ion used. Moreover, the values found for Delta(eff) and tau(o) for 3 of 38.6 K and 3.0 x 10(-9) s respectively reveal that the complex 3 exhibits the highest energy barrier recorded so far for 3d-4f SMMs. The slow relaxation of the magnetisation for 3 was confirmed by mu-SQUID measurements on an oriented single crystal and the observation of M versus H hysteresis loops below 1.9 K.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Two nanosized Mn49 and Mn25Na4 clusters based on analogues of the high‐spin (S=22) [MnIII6MnII44‐O)4]18+ supertetrahedral core are reported. Mn49 and Mn25Na4 complexes consist of eight and four decametallic supertetrahedral subunits, respectively, display high virtual symmetry (Oh), and are unique examples of clusters based on a large number of tightly linked high nuclearity magnetic units. The complexes also have large spin ground‐state values (Mn49: S=61/2; Mn25Na4: S=51/2) with the Mn49 cluster displaying single‐molecule magnet (SMM) behavior and being the second largest reported homometallic SMM.  相似文献   

10.
11.
12.
13.
14.
15.
Three azide‐bridged MnIII chains [Mn(3‐MeOsalpn)(N3)] ? 0.5 AClO4 (A=Na ( 1 ), K ( 2 ), Rb ( 3 ); 3‐MeOsalpn=N,N′‐propylenebis(3‐methoxysalicylideneiminato) dianion) incorporating alkali metal ions and perchlorate anions were systematically synthesized. The overall structure can be described as a one‐dimensional chain bridged by end‐to‐end azide ligands, although spatial arrangements of Jahn–Teller axes of Mn in 1 and 2 are different from that in 3 . Relying on the alkali metal ions, magnetic properties are varied from a two‐step phase transition ( 1 ) to metamagnetic transitions ( 2 and 3 ). In this system, spin canting definitely plays a central role in giving rise to the apparent slow magnetic relaxations in 1 and 2 because application of a high external magnetic field tends to destroy single‐chain magnet (SCM) properties. Despite the existence of a long‐range antiferromagnetic order at TN, slow magnetic relaxation is notably observed in 2 , which likely emanates from the operative spin canting below TN.  相似文献   

16.
17.
18.
The reaction of 1/3 equivalent of CuCl2.2H2O with MnCl2.4H2O and 5-bromo-2-salicylideneamino-1-propanol (H(2)5-Br-sap) in methanol gave dark brown crystals of [MnIIICuIICl(5-Br-sap)2(MeOH)] (1). Complex 1 has an alkoxo-bridged dinuclear core of MnIII and CuII ions, which have elongated octahedral and square-planar coordination geometries, respectively. In dc magnetic susceptibility measurements, chi(m)T values increased as the temperature was lowered, followed by a sudden decrease below 20 K. This behavior is indicative of the occurrence of intramolecular ferromagnetic interactions, and fitting gave an S=5/2 spin ground state with an exchange coupling constant J(MnCu) of +78 cm(-1). Magnetization data collected as a function of temperature and applied magnetic field were analyzed by using a spin Hamiltonian with isotropic Zeeman and axial zero-field splitting (ZFS) terms, and a negative D(5/2) value (-1.86 cm(-1)) was obtained. A high-field EPR (HFEPR) spectrum (342.0 GHz) at 4.2 K was composed of four peaks, and two additional peaks at higher magnetic field appeared as the temperature was increased. The temperature dependences in the HFEPR spectra are indicative of a negative D(5/2) value, and fitting of the data gave D(5/2)=-1.81 cm(-1). In the ac magnetic susceptibility measurements, frequency dependent in-phase (chi(m)') and out-of-phase (chi(m)') signals with peak maxima at 0.7-1.5 K were observed and small peaks below 0.7 K appeared. The ac susceptibility data supports that 1 is a single-molecule magnet (SMM). Arrhenius plots for the chi(m)' peaks from 0.7-1.5 K gave the re-orientation energy barrier (DeltaE) of 10.5 K with a pre-exponential factor of 8.2x10(-8) s.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号